Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists explain the molecular workings of promising fuel cell electrolyte

23.04.2012
Researchers from New York University and the Max Planck Institute in Stuttgart reveal how protons move in phosphoric acid in a Nature Chemistry study that sheds new light on the workings of a promising fuel cell electrolyte.

Phosphoric acid fuel cells were the first modern fuel cell types to be used commercially and have found application as both stationary and automotive power sources. Their high efficiency as combined power and heat generators make them attractive targets for further development.

In the cell, phosphoric acid functions as the medium (or "electrolyte") that transports protons produced in the reaction that decomposes the fuel across the cell. Indeed, phosphoric acid has the highest proton conductivity of any known substance, but what makes it work so well as a proton conductor has remained a mystery.

Efficient proton transport across a fuel cell is just one of several technical challenges that must be tackled before this technology can be applied on a massive scale. The key to this problem is the identification of a suitable electrolyte material. Hydrated polymers are often employed, but these must operate at temperatures below the boiling point of water, which limits their utility. Phosphoric acid fuel cells and other phosphate-based cells, by contrast, can be operated at substantially higher temperatures.

Chemists have sought a molecular level understanding of proton conduction phenomena for more than 200 years. The earliest studies concerned water and can be traced back to a landmark paper in 1806 by the German chemist Theodor von Grotthuss. In this paper, Grotthuss suggested that excess protons in aqueous acids are not themselves transported, but rather it is the chemical bonding pattern they create that is transported via a series of short hops of protons between neighboring water molecules. Such hops occur through the hydrogen bonds that connect water molecules into a network.

One can liken this process to an old-time fire brigade in which each fireman in a long line holds a bucket of water in his left hand. A fireman at the end of the line receives a new water bucket in his right hand, so in order to make the transport of water down the line as efficient as possible, he passes the bucket in his left hand to the right hand of his neighbor. The neighbor, who now holds buckets in his left and right hands, passes the bucket in his left hand to the right hand of the next fireman in the line, and the process continues like this until the person at the opposite end of the line holds two buckets. Overall, water is transported down the line, but it is not the same bucket being passed in each transfer.

Of course, the transport of excess protons in water is not this simple—it involves complex rearrangements of the hydrogen bonds at each transfer step to accommodate the diffusing chemical bonding pattern. Because of this, proton transport in water appears to be a step-wise process. Water faces other limitations—it cannot function as an intrinsic proton conductor but must have protons added to it to create aqueous acid solutions before any noticeable proton transport occurs.

The Nature Chemistry study contrasted proton conduction in phosphoric acid with excess protons in aqueous solutions. In their work, the researchers carried out a type of "computerized experiment" or "simulation" in which no prior knowledge of the chemical processes is required. The only input is the atomic composition of phosphoric acid (hydrogen, oxygen, and phosphorus). Based on this input, the atoms' motion in time is determined from the fundamental laws of physics. In this way, the proton conduction mechanism can be allowed to unfold and be discovered directly from the simulation output.

Their results showed that proton motion in phosphoric acid is a highly cooperative process that can involve as many as five phosphoric acid molecules at a time serving as a kind of temporary "proton wire" or chain. The basic findings are:

In contrast to the step-wise mechanism that operates in water, phosphoric acid transfers protons in a more "streamlined" fashion, in which protons move in a concerted manner along one of these temporary wires.

Eventually, it becomes energetically unfavourable for this wire to sustain this proton motion. Hence, the system then seeks to resolve this unfavourable condition by breaking one of the hydrogen bonds in this temporary wire and forming a new wire arrangement with other nearby phosphoric acid molecules. New wire arrangements persist until they can no longer sustain the proton motion in them, at which point they break and new wires are formed. This process of forming and breaking the short wires allows for a steady proton current and overall high proton conductivity.

Although phosphoric acid has its advantages in fuel cell applications, phosphoric acid fuel cells still are not as powerful as other types of cells and, as pure power sources, are not as efficient. However, an understanding of the basic proton transport mechanism can help improve the design of such cells or suggest other phosphate based materials that could serve as the proton carrier.

The study's authors were: Mark Tuckerman, a professor in NYU's Department of Chemistry as well as Linas Vilèiauskas, Gabriel Bester, and Klaus-Dieter Kreuer from the Max Planck Institute and Stephen J. Paddison of the University of Tennessee, Knoxville.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>