Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Discover Proton Mechanism Used by Flu Virus to Infect Cells

25.10.2010
The flu virus uses a shuttle mechanism to relay protons through a channel in a process necessary for the virus to infect a host cell, according to a research project led by Mei Hong of Iowa State University and the Ames Laboratory.

The findings are published in the Oct. 22 issue of the journal Science.

Hong, an Iowa State professor of chemistry and an associate of the U.S. Department of Energy¡¯s Ames Laboratory, said her research team used solid-state nuclear magnetic resonance (NMR) spectroscopy to determine the structure and workings of the proton channel that connects the flu virus to a healthy cell.

She said a full understanding of that mechanism could help medical researchers design drugs that stop protons from moving through the channel.

That proton channel is an important part of the life cycle of a flu virus. The virus begins an infection by attaching itself to a healthy cell. The healthy cell surrounds the virus and takes it inside through a process called endocytosis. Once inside the cell, the virus uses a protein called M2 to open a channel. Protons from the healthy cell flow through the channel into the virus and raise its acidity. That triggers the release of the virus¡¯ genetic material into the healthy cell. The virus then hijacks the healthy cell¡¯s resources to replicate itself.

Hong and her research team ¨C Fanghao Hu, an Iowa State doctoral student in chemistry; and Wenbin Luo, a former Iowa State doctoral student who is now a spectroscopist research associate at Penn State University ¨C focused their attention on the structure and dynamics of the proton-selective amino acid residue, a histidine in the transmembrane part of the protein, to determine how the channel conducts protons. Their work was supported by grants from the National Science Foundation and the National Institutes of Health.

Two models had been proposed for the proton-conducting mechanism:

¡ñ A ¡°shutter¡± channel that expands at the charged histidine because of electrostatic repulsion, thus allowing a continuous hydrogen-bonded water chain that takes protons into the virus.

¡ñ Or a ¡°shuttle¡± model featuring histidine rings that rearrange their structure in some way to capture protons and relay them inside.

Hong¡¯s research team found that the histidine rings reorient by 45 degrees more than 50,000 times per second in the open state, but are immobile in the closed state. The energy barrier for the open-state ring motion agrees well with the energy barrier for proton conduction, which suggests that the M2 channel dynamically shuttles the protons into the virus. The chemists also found that the histidine residue forms multiple hydrogen bonds with water, which helps it to dissociate the extra proton.

¡°The histidine acts like a shuttle,¡± Hong said. ¡°It picks up a proton from the exterior and flips to let it get off to the interior.¡±

The project not only provided atomic details of the proton-conducting apparatus of the flu virus, but also demonstrated the abilities of solid-state NMR.

¡°The structural information obtained here is largely invisible to conventional high-resolution techniques,¡± the researchers wrote in their Science paper, ¡°and demonstrates the ability of solid-state NMR to elucidate functionally important membrane protein dynamics and chemistry.¡±

Mei Hong, Chemistry and Ames Laboratory, 515-294-3521, mhong@iastate.edu
Mike Krapfl, News Service, 515-294-4917, mkrapfl@iastate.edu

Mike Krapfl | Newswise Science News
Further information:
http://www.iastate.edu

Further reports about: Flu Outbreak Iowa NMR ProTon Science TV Virus chemists discover flu virus healthy cell infect methanol fuel cells

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

One-way roads for spin currents

23.05.2018 | Physics and Astronomy

A simple mechanism could have been decisive for the development of life

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>