Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Discover Method to Create High-Value Chemicals from Biomass

06.09.2010
Iowa State University researchers have found a way to produce high-value chemicals such as ethylene glycol and propylene glycol from biomass rather than petroleum sources.

Walter Trahanovsky, an Iowa State professor of chemistry who likes to write out the chemical structures of compounds when he talks about his science, was looking to produce sugar derivatives from cellulose and other forms of biomass using high-temperature chemistry. And so he and members of his research group studied the reactions of cellulosic materials in alcohols at high temperatures and pressures.

They analyzed the products of the reactions using nuclear magnetic resonance spectroscopy. Early experiments produced the expected sugar derivatives. Additional work, however, clearly revealed significant yields of ethylene glycol and propylene glycol.

“It was a real surprise,” Trahanovsky said. “These products were unexpected, so we never looked for them. But they were always there.”

Uses for ethylene glycol include auto antifreeze, polyester fabrics and plastic bottles. Propylene glycol has many uses, including as a food additive, a solvent in pharmaceuticals, a moisturizer in cosmetics and as a coolant in liquid cooling systems.

Conversion of biomass to fuels and other chemicals can require strong acids or other harsh and expensive compounds. These processes also generate chemical wastes that have to be collected for safe disposal.

The Iowa State researchers say they have found a technology that is simpler yet effective and also better for the environment.

“There is potential here,” said Trahanovsky. “It’s not a wild dream to think this could be developed into a practical process.”

The biomass conversion process is based on the chemistry of supercritical fluids, fluids that are heated under pressure until their liquid and gas phases merge. In this case, Trahanovsky said the key results are significant yields of ethylene glycol, propylene glycol and other chemicals with low molecular weights. He said the process also produces alkyl glucosides and levoglucosan that can be converted into glucose for ethanol production or other uses.

All this happens without the use of any expensive reagents such as acids, enzymes, catalysts or hydrogen gas, Trahanovsky said. The process even works when there are impurities in the biomass.

The Iowa State University Research Foundation Inc. has filed for a patent of the technology.

The research has been supported by grants from the Iowa Energy Center. Other Iowa State researchers who have contributed to the project include Ronald Holtan, a postdoctoral research associate in chemistry; Norm Olson, the project manager of the Iowa Energy Center’s BECON facility near Nevada; Joseph Marshall, a former graduate student; and Alyse Hurd and Kyle Quasdorf, former undergraduate students.

Trahanovsky said the research team is still working to develop and improve the conversion technology.

And he does think the technology could be useful to industry.

“The starting materials for this are cheap,” Trahanovsky said. “And the products are reasonably high-value chemicals.”

Walter Trahanovsky | Newswise Science News
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>