Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemists Discover Method to Create High-Value Chemicals from Biomass

Iowa State University researchers have found a way to produce high-value chemicals such as ethylene glycol and propylene glycol from biomass rather than petroleum sources.

Walter Trahanovsky, an Iowa State professor of chemistry who likes to write out the chemical structures of compounds when he talks about his science, was looking to produce sugar derivatives from cellulose and other forms of biomass using high-temperature chemistry. And so he and members of his research group studied the reactions of cellulosic materials in alcohols at high temperatures and pressures.

They analyzed the products of the reactions using nuclear magnetic resonance spectroscopy. Early experiments produced the expected sugar derivatives. Additional work, however, clearly revealed significant yields of ethylene glycol and propylene glycol.

“It was a real surprise,” Trahanovsky said. “These products were unexpected, so we never looked for them. But they were always there.”

Uses for ethylene glycol include auto antifreeze, polyester fabrics and plastic bottles. Propylene glycol has many uses, including as a food additive, a solvent in pharmaceuticals, a moisturizer in cosmetics and as a coolant in liquid cooling systems.

Conversion of biomass to fuels and other chemicals can require strong acids or other harsh and expensive compounds. These processes also generate chemical wastes that have to be collected for safe disposal.

The Iowa State researchers say they have found a technology that is simpler yet effective and also better for the environment.

“There is potential here,” said Trahanovsky. “It’s not a wild dream to think this could be developed into a practical process.”

The biomass conversion process is based on the chemistry of supercritical fluids, fluids that are heated under pressure until their liquid and gas phases merge. In this case, Trahanovsky said the key results are significant yields of ethylene glycol, propylene glycol and other chemicals with low molecular weights. He said the process also produces alkyl glucosides and levoglucosan that can be converted into glucose for ethanol production or other uses.

All this happens without the use of any expensive reagents such as acids, enzymes, catalysts or hydrogen gas, Trahanovsky said. The process even works when there are impurities in the biomass.

The Iowa State University Research Foundation Inc. has filed for a patent of the technology.

The research has been supported by grants from the Iowa Energy Center. Other Iowa State researchers who have contributed to the project include Ronald Holtan, a postdoctoral research associate in chemistry; Norm Olson, the project manager of the Iowa Energy Center’s BECON facility near Nevada; Joseph Marshall, a former graduate student; and Alyse Hurd and Kyle Quasdorf, former undergraduate students.

Trahanovsky said the research team is still working to develop and improve the conversion technology.

And he does think the technology could be useful to industry.

“The starting materials for this are cheap,” Trahanovsky said. “And the products are reasonably high-value chemicals.”

Walter Trahanovsky | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>