Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Devise Better Way to Prepare Workhorse Molecules

14.06.2011
In chemistry, so-called aromatic molecules compose a large and versatile family of chemical compounds that are the stuff of pharmaceuticals, electronic materials and consumer products ranging from sunscreen to plastic soda bottles.

Writing in the current online issue (June 9) of the journal Science, a team led by University of Wisconsin-Madison chemistry Professor Shannon Stahl reports a new, environmentally friendly way to make substituted aromatic molecules that can be customized for different industrial needs.

As college chemistry students know, aromatic molecules have a special stability conferred by a ring of six carbon atoms with alternating single and double bonds. “The ultimate utility of these molecules depends on the chemical groups attached at the corners of this hexagonal platform,” explains Stahl. “Interest in preparing substituted aromatic molecules traces back to the dawn of organic chemistry.”

In fact, the 2010 Nobel Prize in Chemistry was awarded for catalytic chemical reactions that allow the introduction of specific groups to the periphery of aromatic molecules. These methods, and older traditional methods, rely on modifying an existing aromatic molecule, Stahl explains. But the stability of aromatic molecules can make such approaches difficult, and existing methods also have many limitations in the types and patterns of chemical groups that can be installed.

The method devised by Stahl and Wisconsin colleagues Yusuke Izawa and Doris Pun owes its success to the discovery of a new palladium catalyst. The catalyst gives chemists a way to peel off hydrogen from cyclic molecules to form aromatic products with the desired substitution patterns already in place. The hydrogen removed by the palladium catalyst is combined with oxygen, and water is formed as the only byproduct.

The Wisconsin team demonstrated the utility and efficiency of the new process on phenols, aromatic compounds that are produced on a large scale as precursors to many kinds of industrial materials and pharmaceutical agents. While the new catalytic method can be used to make a broad spectrum of aromatic molecules of interest to science and industry, the new work will be of most immediate practical use to drug companies, according to Stahl. For example, an anticancer agent that was difficult to make using previously known methods was efficiently produced using the strategy devised by the team.

Stahl notes that the work published today in Science will require more development before it is suitable for large-scale industrial production, but he emphasizes that concepts introduced by the new work will have broad utility. “Many new catalysts, reaction conditions and target molecules can be envisioned. Overall, this route to substituted aromatic molecules has a lot of potential,” he says.

The new study was supported by grants from the U.S. National Institutes of Health, the Mitsubishi Chemical Corp. and the U.S. National Science Foundation.

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

Further reports about: Devise Molecules Workhorse carbon atom chemical reaction palladium catalyst

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>