Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists develope a new method for the formation of fluorinated molecular rings

11.08.2017

Chemists led by Prof. Frank Glorius from the University of Münster have developed a new and practical synthetic method for the formation of fluorinated three-dimensional “saturated” molecular ring structures. This development can have great importance for the efficient production of new molecules and, consequently, new drugs, crop protection agents and functional materials.

Dyes, pharmaceuticals, and functional materials – all of these products are generally based on innovative molecules made by chemists. For their production several chemical reactions are available to the expert, however, limitations remain. For example, fluorinated compounds, molecules that contain at least one fluorine atom, are often rather difficult to prepare.


Illustration of the new synthetic method

WWU/Frank Glorius

This is unfortunate, since they exhibit interesting chemical properties and are of greatest importance for the development of active ingredients. Thus, new ways have to be found to produce these compounds. Now, chemists from the Westfälische Wilhems-Universität (WWU) made the impossible possible: they have developed a new and practical synthetic method for the formation of such fluorinated three-dimensional “saturated” (meaning only single-bond containing) molecular ring structures.

The report of Prof. Dr. Frank Glorius, Mario Wiesenfeldt, Dr. Zackaria Nairoukh and Dr. Wei Li has just been published online in the learned journal “Science“.

“I feel that our results are a breakthrough. It can have great importance for the efficient production of new molecules and, consequently, new drugs, crop protection agents and functional materials” is the assessment of Frank Glorius.

His new synthetic method starts from flat, “aromatic“ (and thus very stable) ring structures built up from carbon and bearing fluorine atoms. These starting materials employed by the Münster scientists are either low priced commercially available compounds or they can be readily made.

Facilitated by a catalyst the chemists succeeded to add hydrogen atoms (“hydrogenation”) selectively to one face of the ring system. Chemists and biochemists define catalysts as enzymes or molecules that can speed up or enable certain reactions. A selective addition allows the control of the properties of the products formed, for example the solubility, the aggregate state or the polarity. A molecule is considered to be “polar”, if charges are separated to result in more negative and more positive molecular fragments. The products formed in this study contain the more negatively charged fluorine atoms on one face and the more positively charged hydrogen atoms on the other face of the ring.

Many different fluorinated aromatic starting materials were successfully converted into the desired products by the group of Frank Glorius. “For two reasons the success of our work was rather unexpected” stresses Frank Glorius. “The attached fluorine atoms reduce the reactivity of the already not very reactive aromatic starting materials in the catalytic hydrogenation even further. This is especially true for substrates containing multiple fluorine atoms. Even more pronounced is the sensitivity of the carbon-fluorine bond against hydrogenation, generally leading to the loss of the fluorine atom.”

Many studies of the past had observed this latter problem. Remarkably, the new synthetic method allows fluorine atoms to tolerate the catalytic hydrogenation. “We have identified a catalyst system that is powerful enough to overcome the aromatic stabilization. Yet it is mild enough to preserve the carbon-fluorine bonds.” As a catalyst the scientists from Münster utilize a combination of the noble metal rhodium and an especially electron-rich carbene-ligand (a special “metal-binding” molecule) that greatly influences the properties of the catalyst.

First author Mario Wiesenfeldt summarizes: “The new method provides surprisingly simple access to a fascinating structural motif: cyclic, saturated and selectively fluorinated on one face. Many of the products are characterized by a high level of polarity.”

Easily prepared in one step and in larger amounts

Some background information: The compound “all-cis-1,2,3,4,5,6-hexafluorocyclohexane“, in which the saturated six-membered carbon-cycle contains the maximum number of 6 fluorine atoms on the same face of the ring, represents one of the most polar organic molecules known to date. Only in 2015 this remarkable compound was first prepared and reported by Prof. David O’Hagan from the University of St. Andrews in Scotland. However, his team required a twelve-step synthetic sequence for its formation. The new method allows the formation of this and many related compounds in a convenient single step, thus allowing the formation of larger amounts.

Asymmetric hydrogenation of arenes as a remaining challenge

“Hydrogenation is an attractive and often very clean method of synthesis“ stresses Frank Glorius. “An especially prominent example is the formation of ammonia through the Haber-Bosch process, the hydrogenation of nitrogen, consuming more than 1% of the world's annual energy supply. It is of fundamental importance for the nutrition of mankind, since it serves as a basis for the production of nitrogen fertilizer, among others.“ In addition the importance is also reflected by the three Nobel prizes given for this topic (Fritz Haber 1918, Carl Bosch 1931, Gerhard Ertl 2007). Also important is the hydrogenation of organic compounds, last decorated with a Nobel price for the asymmetric hydrogenation of aromatic compounds in 2001 (William S. Knowles und Ryoji Noyori). Chemoselective and asymmetric hydrogenation reactions of aromatic compounds remain to be challenging.

This work was financed by the Studienstiftung des Deutschen Volkes (Mario P. Wiesenfeldt), the Hans Jensen Minerva Foundation (Zackaria Nairoukh), the Alexander von Humboldt Foundation (Wei Li) and the Deutsche Forschungsgemeinschaft (Gottfried Wilhelm Leibniz Prize for Frank Glorius). Based on these results a patent application was filed.

Original publication:

Mario P. Wiesenfeldt, Zackaria Nairoukh, Wie Li und Frank Glorius: Hydrogenation of fluoroarenes: Direct access to all-cis-(multi)fluorinated cycloalkanes. Science; Published online 10 Aug 2017; DOI: 10.1126/science.aao0270

Weitere Informationen:

http://science.sciencemag.org/content/early/2017/08/09/science.aao0270 Original publication in "Science"
https://www.uni-muenster.de/Chemie.oc/glorius/ Glorius group

Dr. Christina Heimken | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>