Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Develop More Efficient Protein Labeling

07.02.2012
North Carolina State University researchers have created specially engineered mammalian cells to provide a new “chemical handle” which will enable researchers to label proteins of interest more efficiently, without disrupting the normal function of the proteins themselves or the cells in which they are found.

Protein labeling is used by researchers in a variety of fields to help them understand how these important molecules affect the normal functioning of cells. Currently, proteins are labeled for study simply by fusing them to other fluorescent proteins, which allows researchers to use microscopy to track their movements through a cell. This approach has several drawbacks, however, not least being that the fluorescent proteins are often large enough to affect the function of the protein of interest.

Dr. Alex Deiters, associate professor of chemistry, along with colleague Dr. Jason Chin of the Laboratory of Molecular Biology at the Medical Research Council in Cambridge, U.K., have developed a way to attach a fluorophore – a fluorescent molecule about 20 times smaller than the fluorescent proteins currently in use – to a protein that is expressed in a mammalian cell.

Deiters and Chin developed a special 21st amino acid that they added to cells that were specially engineered to incorporate this amino acid into the protein they wanted to study (there are normally only 20 amino acids). This 21st amino acid has a “chemical handle” that only reacts with a specifically designed fluorophore, but not any cellular components. According to Deiters, “The reaction between the modified protein and the fluorophore is extremely fast, high yielding, and generates a stable link between both reaction partners. This novel methodology enables future cell biological studies that were previously not possible.”

The research appears in the Feb. 5 issue of Nature Chemistry.

“We found that our approach gave us a higher yield of labeled proteins and that the binding reaction was 50 times faster than with current methods,” Deiters says. “Additionally, it took less reagent to complete the reaction, so overall we have a faster, more efficient method for protein labeling, and less chance of interfering with the normal function of the proteins and cells being studied.”

The research was funded by the National Institutes of Health and the National Science Foundation. The Department of Chemistry is part of NC State’s College of Physical and Mathematical Sciences.

Note to editors: Abstract of the paper follows

“Genetically encoded norbornene directs site-specific cellular protein labelling via a

rapid bioorthogonal reaction”

Authors: Alexander Deiters, Jessica Torres-Kolbus, Chungjung Chou, North Carolina State University; Jason W. Chin, Kathrin Lang, Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge, UK

Published: Feb. 5, 2012 in Nature Chemistry

Abstract:
The site-specific incorporation of bioorthogonal groups via the expansion of genetic code provides a powerful general strategy for site-specifically labelling proteins with any probe. However, the slow reactivity of the bioorthogonal functional groups that can be encoded genetically limits the utility of this strategy. We demonstrate the genetic encoding of a norbornene amino acid using the pyrrolysyl transfer RNA synthetase/tRNACUA pair in Escherichia coli and mammalian cells. We developed a series of tetrazine-based probes that exhibit ‘turn-on’ fluorescence on their rapid reaction with norbornenes. We demonstrate that the labelling of an encoded norbornene is specific with respect to the entire soluble E. coli proteome and thousands of times faster than established encodable bioorthogonal reactions. We show explicitly the advantages of this approach over state-of-the-art bioorthogonal reactions for protein labelling in vitro and on mammalian cells, and so demonstrate the first rapid bioorthogonal site-specific labelling of a protein on the mammalian cell surface.

Tracey Peake | Newswise Science News
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>