Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists create two-armed nanorobotic device to maneuver world's tiniest particles

17.02.2009
Chemists at New York University and China's Nanjing University have developed a two-armed nanorobotic device that can manipulate molecules within a device built from DNA. The device is described in the latest issue of the journal Nature Nanotechnology.

"The aim of nanotechnology is to put specific atomic and molecular species where we want them and when we want them there," said NYU Chemistry Professor Nadrian Seeman, one of the co-authors. "This is a programmable unit that allows researchers to capture and maneuver patterns on a scale that is unprecedented."

The device is approximately 150 x 50 x 8 nanometers. A nanometer is one billionth of a meter. Put another way, if a nanometer were the size of a normal apple, measuring approximately 10 centimeters in diameter, a normal apple, enlarged proportionally, would be roughly the size of the earth.

The creation enhances Seeman's earlier work—a single nanorobotic arm, completed in 2006, marking the first time scientists had been able to employ a functional nanotechnology device within a DNA array.

The new, two-armed device employs DNA origami, a method unveiled in 2006 that uses a few hundred short DNA strands to direct a very long DNA strand to form structures that adopt any desired shape. These shapes, approximately 100 nanometers in diameter, are eight times larger and three times more complex than what could be created within a simple crystalline DNA array.

As with Seeman's previous creation, the two-armed nanorobotic device enables the creation of new DNA structures, thereby potentially serving as a factory for assembling the building blocks of new materials. With this capability, it has the potential to develop new synthetic fibers, advance the encryption of information, and improve DNA-scaffolded computer assembly.

In the two-armed nanorobotic device, the arms face each other, ready to capture molecules that make up a DNA sequence. Using set strands that bind to its molecules, the arms are then able to change the structure of the device. This changes the sticky ends available to capture a new pattern component.

The researchers note that the device performs with 100 percent accuracy. Earlier trials revealed that it captured targeted molecules only 60 to 80 percent of the time. But by heating the device in the presence of the correct species, they found that the arms captured the targeted molecules 100 percent of the time.

They confirmed their results by atomic force microscopy (AFM), which permits features that are a few billionths of a meter to be visualized.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>