Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists Clarify Protein-Receptor Role in Iron Uptake

22.04.2010
In recent years cancer researchers, particularly brain tumor specialists, have pinned some hope for delivering anti-tumor drugs on transferrin, a protein that carries the essential element iron into cells.

This is because unlike most other proteins, transferrin can cross the blood-brain barrier. But a new study of transferrin and its receptor by chemists at the University of Massachusetts Amherst reveals that transferrin isn’t as open to drug loading as hoped, so creating a good delivery system may be more challenging than previously thought.

Nevertheless, work led by UMass Amherst researcher Igor Kaltashov and doctoral student Rachel Leverence, now at the University of Wisconsin-Madison, with Anne Mason of the University of Vermont College of Medicine, highlights for the first time the great potential of the mass spectrometry method they used in this study, for providing precise details of complex protein-receptor interactions under conditions that closely mimic those inside the body. Their findings appear in the current online edition of Proceedings of the National Academy of Sciences.

As Kaltashov explains, “Our research looked at how the transferrin protein interacts with its receptor and how this has relevance for anti-cancer therapy.” One reason medical researchers have been so hopeful about transferrin and its drug-delivery potential is that cancer cells demand huge amounts of iron to thrive. Scientists long believed that after the transferrin protein delivered its iron load into a cell, it would emerge again not bound to the receptor, leaving a space for drug uptake and delivery into the tumor cell, thus providing a way to introduce toxins to kill the cancer.

“But we found that life is much more complicated,” says Kaltashov. “One of our important conclusions is that transferrin would probably interfere with the binding between the receptor and any anti-cancer drug one might try to attach.” Despite this, his findings do not represent a dead end, the analytical chemist adds. The mass spectrometry technique was extremely effective in allowing the researchers to observe and examine the transferrin receptor complex and its behavior in detail. The method is generalizable and can be applied to any system, including potential new anti-cancer drugs, Kaltashov adds.

Specifically, he and colleagues used an ion cyclotron resonance mass spectrometer, a cross-over between more familiar medical magnetic imaging devices such as MRI and classical mass spectrometers. It is powerful enough to analyze proteins, DNA and other biological molecules. First the ions, the electrically charged forms of molecules, are extracted from a fine aerosol produced by spraying solutions containing biomolecules. These ions are then guided to a magnet through a system of ion optics under ultra-high vacuum conditions.

Once inside the magnet, the ions move along circular orbits; the frequency of this movement provides very precise information on molecular masses. This new type of instrument is so powerful it can measure the mass of nano-objects ranging from single atoms to giant biomolecules with precision better than 0.0001 percent, the chemist says.

Further, the Kaltashov laboratory recently purchased a powerful new mass spectrometer with an $800,000 Major Research Instrumentation grant from the National Science Foundation to aid research in life sciences, where knowledge of molecular structure is critical for understanding processes as diverse as drug delivery and protein folding. Thus the UMass Amherst campus now has one of the best equipped mass spectrometry laboratories in the nation.

As Kaltashov explains, the usefulness of such mass spectrometers to life sciences research extends far beyond simply measuring atomic and molecular masses. For example, one can break a large molecule apart inside the instrument and measure masses of the resulting fragments. “Figuring how these fragments may fit together in pretty much the same way a puzzle is pieced together provides a way to determine the structure of proteins, DNA and other biomolecules,” he says.

Now his group is developing new methods to probe other traits of proteins and their brethren in the biological world, such as three-dimensional organization and interactions with physiological partners. This technology will be critical for advancing knowledge in areas ranging from fundamental problems in biophysics and structural biology to design and testing of new biopharmaceutical products.

Igor Kaltashov
413-545-1460
kaltashov@chem.umass.edu

Igor Kaltashov | Newswise Science News
Further information:
http://www.umass.edu

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>