Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry: Success Through Cooperation

20.03.2012
Scientists of the University of Innsbruck, Austria, tested a new chemical modification of RNA molecules successfully for the first time.

The results of the close cooperation of two research groups of the Centre for Molecular Biosciences (CMBI) have been published in the journal ACS Chemical Biology.


A fluorescent dye lightens up the modified RNA in the cell. Uni Innsbruck

In biosciences RNA interference has become one of the major tools for analyzing gene function. By using short strands of RNA molecules, scientists can target specific genes in the genome and silence them, which enables the researchers, for example, to determine their biological function in the cell. High expectations have also been placed on this tool to develop new pharmacological therapies to treat diseases. To successfully use RNA in this context, it usually has to be modified chemically. This protects the molecule from degradation processes in the cell, decreases off-target effects and prevents immune reactions. Numerous chemical modifications have been developed and tested since RNA interference was discovered. However, a simple modification of RNA molecules had previously been neglected: coupling an azido group to the molecule. A team of chemists led by Ronald Micura from the Institute of Organic Chemistry and Klaus Bister from the Institute of Biochemistry, University of Innsbruck, together with Eric Ennifar, specializing in crystallography at the University of Strasbourg, have tested this chemical modification successfully for the first time.

Modified chemically, same effect biologically

“This modification has been neglected because it cannot be synthesized with the standard method,“ explains Ronald Micura. “Now we have found a way, which is based on standard procedures, to couple the azido group to the RNA.“ After determining its three dimensional crystal structure at the University of Strasbourg, Klaus Bister’s research group tested the biological function of the modified RNA. “In our experiment we used an RNA molecule that specifically suppresses the gene BASP1,” says Bister. “We have been investigating this gene intensively for a while now because it plays an important role in cancer growth and so this project is of very high interest for us.“ Biological analyses in Innsbruck showed that the chemical modification of the RNA did not affect its biological function. “This is very important for its future application,“ explains Katja Fauster, first author of the publication. “Another advantage is that the modification is reactive, which means that we can add additional molecules to the azido group.” The chemists exploited this reactivity in the experiment to lighten up the RNA in the cell by introducing fluorescent dyes.

New building – new communication networks

The two research groups headed by Bister and Micura, who just settled in to the new building called Centrum for Chemistry and Biomedicine (CCB), underline the success of interdisciplinary cooperation within the main research Centre of Molecular Biosciences (CMBI) at the University of Innsbruck. “The only thing that separates us today is a flight of stairs,” says Klaus Bister, who is very happy about the new working and research conditions in the new building. The communicative design of the new building promises an increase in successful joint projects within the main research area. The Innsbruck researchers are supported by the Austrian Science Fund FWF and within the framework of the GEN-AU research program funded by the Ministry of Science.

Weitere Informationen:
http://dx.doi.org/10.1021/cb200510k - 2′-Azido RNA, a Versatile Tool for Chemical Biology: Synthesis, X-ray Structure, siRNA Applications, Click Labeling. Katja Fauster, Markus Hartl, Tobias Santner, Michaela Aigner, Christoph Kreutz, Klaus Bister, Eric Ennifar, Ronald Micura. ACS Chem. Biol., 2012, 7 (3), pp 581-9

http://www.uibk.ac.at/cmbi/ - Center for Molecular Biosciences (CMBI)

Contact:
Univ.-Prof. Dr. Klaus Bister
Institute of Biochemistry
University of Innsbruck
phone: +43 512 507 57500
email: klaus.bister@uibk.ac.at
Univ.-Prof. Dr. Ronald Micura
Institute of Organic Chemistry
University of Innsbruck
phone: +43 512 507 57710
email: ronald.micura@uibk.ac.at
Dr. Christian Flatz
Büro für Öffentlichkeitsarbeit
University of Innsbruck
phone: +43 512 507 32022
email: christian.flatz@uibk.ac.at

Dr. Christian Flatz | Universität Innsbruck
Further information:
http://www.uibk.ac.at/cmbi/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>