Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry with sorted Molecules

04.10.2013
To gain complete control over chemical reactions is one of the main goals of chemists around the world.

Scientists at the University of Basel and the Center of Free-Electron Laser Science in Hamburg were able for the first time to successfully sort out single forms of molecules with electric fields and have them react specifically.


3-aminophenol conformers in a molecular beam are spatially separated in an electric field and react with calcium ions that have been localized in space by laser cooling.

Analysis of the reaction rates showed a relation between the spatial structure of the sorted molecules and their chemical reactivity. The results have been published in the renowned magazine «Science».

The reactivity of a chemical compound, that is the rate at which a substance undergoes a chemical reaction, is strongly influenced by the shape of its molecules. Complex molecules often exhibit different shapes, so-called conformers, in which parts of the molecules vary in their spatial arrangement. However, conformers often interconvert between each other under ambient conditions, so that a detailed study of their individual reactivities has been difficult so far.

Scientists around Prof. Stefan Willitsch from the Department of Chemistry at the University of Basel and Prof. Jochen Küpper from the Center for Free-Electron Laser Science in Hamburg (CFEL, DESY) have developed a new experimental setup that allows to study the reactivity of single isolated conformers. The scientists produced a beam of molecules from which they were able to pick specific conformers with a «molecular sorting machine» in order to specifically inject them into a chemical reaction.

The scientists made use of the fact that a change in the shape of a molecule usually also leads to the modification of its dipole moment. The dipole moment describes how a molecule reacts to an external electric field. Inside this sorting machine, a non-uniform electric field deflects single conformers to varying extents so that they are spatially separated.

In a first experiment, the scientists separated two conformers 3-aminophenol, a well-known compound that is widely used in industry. The two conformers only differ in the position of a single hydrogen atom. The separated conformers were then directed into a reaction chamber where they reacted with electrically charged calcium atoms, so-called ions, in a trap. The ions were cooled down with laser light to almost the absolute zero point of temperature scale at minus 273 degrees Celsius. In this way the ions were localized in space and formed an ideal target for reactions with the spatially separated conformers. Thus, the scientists were able to show that one of the conformers reacted twice as fast with the calcium ions than the other, a phenomenon that could be explained by the different electrical properties of the conformers.

The new method allows insight into fundamental reaction mechanisms and the relations between molecular conformation and chemical reactivity, with potentially far-reaching applications in chemical catalysis and the synthesis of new molecules.

Original Citation
Yuan-Pin Chang, Karol D³ugo³êcki, Jochen Küpper, Daniel Rösch, Dieter Wild, Stefan Willitsch
Specific Chemical Reactivities of Spatially Separated 3-Aminophenol Conformers with Cold Ca+ Ions

Science (2013) | doi: 10.1126/science.1242271

Further Information
• Prof. Dr. Stefan Willitsch, University of Basel, Department of Chemistry, Klingelbergstrasse 80, 4056 Basel, Tel. +41 61 267 38 30, E-Mail: stefan.willitsch@unibas.ch

• Prof. Jochen Küpper, Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Tel. +49 40 8998-6330, E-Mail: jochen.kuepper@desy.de

Reto Caluori | Universität Basel
Further information:
http://www.unibas.ch
http://dx.doi.org/10.1126/science.1242271

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>