Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemistry inside aerosol particles leads to better smog forecasts

18.07.2013
The chemical processes inside smog particles affect their size and mass much more than previously thought. The improved prediction of particle size leads to better evaluations of effects of smog on air quality and public health.

Los Angeles, London, New Delhi or Beijing – all are mega cities in which millions of people suffer from breathing problems and burning eyes. The cause is smog. Often it is so thick that the tops of the skyscrapers disappear and the sun cannot be seen for days.


A big smog layer is visible over the American mega city Los Angeles.
Steve Buss, from flickr

Under certain weather conditions smog – a mixture of particles and gaseous pollutants like ozone - develops due to traffic, industrial activities, or combustion of biomass, coal and wood. The main component of urban smog is the so-called secondary organic aerosol (SOA). The SOA particles develop from organic compounds oxidized by ozone and hydroxyl radicals. The organic molecules are for example released by burning fossil and renewable fuels.

The processes and mechanisms for the formation of these smog particles are still poorly understood. It has been difficult to accurately predict size and mass of the particles, which determines atmospheric visibility, i.e. the smog thickness and the extent of adverse health effects.

An improved view on smog has now been obtained by a team led by the Max Planck researcher Manabu Shiraiwa. "So far, it is considered that only the gas reactions are important for smog formation," says Shiraiwa, lead author of a recently published study. "We found out that it is more important what happens inside the particles, which is a typical multiphase reaction and needs to be included in the model forecasts," adds the 30 years old Japanese scientist, who conducted the study at the California Institute of Technology in the U.S. and who came back to the Max Planck Institute for Chemistry in Mainz in April 2013 where he had working before.

The researchers generated smog which mimicked the urban air in the laboratory. They used the volatile organic molecule dodecane as particle source. Dodecane belongs to the alkanes, which consist only of carbon and hydrogen atoms, and is also emitted into the atmosphere by incomplete combustion of biomass. In a giant special reaction chamber they added hydroxyl radicals (OH) for photooxidation leading to the formation of smog particles. Hydroxyl radicals are a kind of cleaning agent of the atmosphere, which quickly reacts with volatile organic molecules such as methane or alkanes. After the oxidation the researchers measured the size of the SOA particles developed in the chamber. About five hours later they observed a steep increase in mass and size of the particles.

The traditional model however predicts a much slower increase. Shiraiwa and his colleagues concluded that the gase phase reactions are not sufficient enough for the particle growth. Mass spectrometry measurements confirmed that the small volatile organic molecule dodecane reacts to bigger, less volatile organic molecules. As these molecules do not evaporate from the particle phase the particles grow bigger. Since these multiphase reactions have so far never been considered in air quality models the researcher hope that including the findings will lead to better prediction of air quality in the urban air.

Shiraiwa who currently establishes a research group at the Max Planck Institute for Chemistry will continue studying the chemical aging of organic aerosols and related topics. He received his Bachelor and Master degree at the University of Tokyo, and his Ph.D. degree at the Max Planck Institute for Chemistry in Mainz where he developed the kinetic model for the reactions of atmospheric particles. In 2012 he has been awarded the Otto Hahn Medal of the Max Planck Society and Paul Crutzen Prize of German Chemical Society for his path-breaking discoveries about the progression of chemical reactions on the surface of and inside aerosol particles.

Original publication
Size distribution dynamics reveal particle-phase chemistry in organic aerosol formation, Manabu Shiraiwa, Lindsay D. Yee, Katherine A. Schilling, Christine L. Loza, Jill S. Craven, Andreas Zuend, Paul J. Ziemann and John H. Seinfeld

PNAS, 110(29), 11746-11750, doi: 10.1073/pnas.1307501110

Dr. Susanne Benner | Max-Planck-Institut
Further information:
http://www.mpic.de/

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>