Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The chemistry of exploding stars

23.01.2012
Meteorite contains evidence of formation of sulfur molecules in the ejecta of a supernova explosion

Fundamental chemical processes in predecessors of our solar system are now a bit better understood: An international team led by Peter Hoppe, researcher at the Max Planck Institute for Chemistry in Mainz, has now examined dust inclusions of the 4.6 billion years old meteorite Murchison, which had been already found in 1969, with a very sensitive method.


Star dust from a supernova. The electron microscopic image shows a silicon carbide grain from the meteorite Murchison. The approximately one micrometer small grains originate from a supernova as an isotopic analysis has shown. Isotopes are forms of an element with different weights. Picture: Peter Hoppe, Max Planck Institute for Chemistry

The stardust grains originate from a supernova, and are older than our solar system. The scientists discovered chemical isotopes, which indicate that sulfur compounds such as silicon sulfide have formed in the ejecta of exploding stars. Sulfur molecules are central to many processes and important for the emergence of life.

Models already predict the formation of sulfur molecules in the ejecta of exploding stars – the supernovae. Scientists from Germany, Japan and the U.S. now brought evidence to the theory with the help of isotope analyses of stardust from meteorites.
The team around the Mainz´ Max Planck researcher Peter Hoppe initially isolated thousands, about 0.1 to 1 micrometer-sized silicon carbide stardust grains from the Murchison meteorite, which was already found in 1969 on Earth. The stardust grains originate from a supernova, and are older than our solar system. The researchers then determined with a highly sensitive spectrometer, the so-called NanoSIMS, the isotopic distribution of the samples. With this technique an ion beam is shot onto the individual stardust grains and releases atoms from the surface. The spectrometer then separates them according to their mass and measures the isotopic abundances. Isotopes of a chemical element have the same number of protons but different numbers of neutrons.

In five silicon carbide samples the astrophysicists found an unusual isotopic distribution: They measured a high amount of heavy silicon and a low amount of heavy sulfur isotopes, a result that does not fit with current models of isotope abundances in stars. At the same time they were able to detect the decay products of radioactive titanium which can be produced only in the innermost zones of a supernova. This proves that the stardust grains indeed derive from a supernova.

A proof for the model of the chemistry of the ejecta of supernovae

"The stardust grains we found are extremely rare. They represent only about the 100 millionth part of the entire meteorite material. That we have found them is much of a coincidence - especially since we were actually looking for silicon carbide stardust with isotopically light silicon," says Peter Hoppe. "The signature of isotopically heavy silicon and light sulfur can plausibly only be explained if silicon sulfide molecules were formed in the innermost zones in the ejecta of a supernova." Afterwards, the sulfide molecules have been enclosed in the condensing silicon carbide crystals. These crystals then reached the solar nebula around 4.6 billion years ago and were subsequently incorporated into the forming planetary bodies. They finally reach the Earth by meteorites which are fragments of asteroids. Carbon monoxide and silicon monoxide were already detected in the ejecta of supernova explosions in infrared spectra. Although models predicted the formation of sulfur molecules, it has not yet been possible to prove this. The measurements on silicon carbide stardust now provide support to the predictions that silicon sulfide molecules arise a few months after the explosion at extreme temperatures of several thousand degrees Celsius in the inner zones of supernova ejecta.
The studied meteorite was named after the Australian city of Murchison, in which it was found in 1969. For astronomers, it is an inexhaustible diary to the formation of our solar system, as it remained almost unaltered since its formation. Beside the stardust inclusions from the ejecta of a supernova Murchison also transported dust to Earth, which has been formed in the winds of red giant stars. Through further analyses, the researchers hope to learn more about the origin of their parent stars.

Original publication:
Peter Hoppe, Wataru Fujiya and Ernst Zinner
Sulfur molecule chemistry in supernova ejecta recorded by silicon carbide stardust
The Astrophysical Journal Letters, published online, 12 January 2012

Contact partner:
Dr. Peter Hoppe
Department for Particle Chemistry
Max Planck Institute for Chemistry
Phone: +49-6131-305 5300
E-mail: peter.hoppe@mpic.de

Dr. Wolfgang Huisl | Max-Planck-Institut
Further information:
http://www.mpic.de

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>