Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel chemistry for new class of antibiotic

03.07.2013
University of Adelaide research has produced a potential new antibiotic which could help in the battle against bacterial resistance to antibiotics.

The potential new antibiotic targets a bacterial enzyme critical to metabolic processes.

The compound is a protein inhibitor which binds to the enzyme (called biotin protein ligase), stopping its action and interrupting the life cycle of the bacteria.

"Existing antibiotics target the bacterial cell membranes but this potential new antibiotic operates in a completely different way," says Professor Andrew Abell, project leader and Acting Head of the University's School of Chemistry and Physics.

Professor Abell says the compound, although at a very early stage of development – it has not yet been tested on an animal model – has the potential to become the first of a new class of antibiotics.

"Bacteria quickly build resistance against the known classes of antibiotics and this is causing a significant global health problem," he says. "Preliminary results show that this new class of compound may be effective against a wide range of bacterial diseases, including tuberculosis which has developed a strain resistant to all known antibiotics."

Developing the new protein inhibitor involved a novel approach called 'in situ click chemistry'. A selection of small molecules, or 'precursor fragments', are presented to the bacteria in a way so that the target protein enzyme itself builds the inhibiting compound and also binds with it.

"In a sense the bacteria unwittingly chooses a compound that will stop its growth and assembles it – like building a weapon and using it against itself," says Professor Abell. "We've gone a step further to specifically engineer the enzyme so that it builds the best and most potent weapon."

"Our results are promising. We've made the compounds; we know they bind and inhibit this enzyme and we've shown they stop the growth of a range of bacteria in the laboratory. The next critical step will be investigating their efficacy in an animal model."

"Thanks to this new approach what might have taken a year or more with a range of sequential experiments, we can now do in one single experiment," Professor Abell says.

The research has been published in the journal Chemical Science and is in collaboration with researchers at Monash University and Adelaide's Women's and Children's Hospital.

Professor Andrew Abell | EurekAlert!
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>