Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemist stitches up speedier chemical reactions

10.05.2010
New details about the Piers catalyst will help chemical industry improve products

Some people have streets named after them. Warren Piers, a chemistry professor at the University of Calgary, has a catalyst penned after him.

And in a paper published today in the online edition of Nature Chemistry, Piers and former graduate student Edwin van der Eide reveal the inner workings of the Piers catalyst at a molecular level of detail not previously available.

"These details are critical for the development of improved catalysts," says Piers, the paper's co-author and S. Robert Blair Professor of chemistry at the University of Calgary. "It will help us and others find new applications and improved reaction conditions for these catalysts."

A chemical catalyst is a molecule that speeds up a chemical reaction without being consumed in the reaction. Enzymes are nature's catalysts, but humankind has invented catalysts that improve and are often required to drive many commercially important chemical reactions.

Catalysts are so versatile that they are used in many chemical industries, ranging from commodity chemicals, those produced on a large scale, to fine chemicals, specialty products like pharmaceuticals, for example.

Catalysts allow companies to make products more economically (lower energy costs) and more selectively (less waste). The details revealed in this paper open the door to new products and materials, creating new companies and markets. One new application involves the production of biofuel hydrocarbon products from seed oils derived from plants.

The paper explores at a level of detail not seen before the inner workings of a chemical reaction called "olefin metathesis." If knitting a wool sweater, catalysts can be thought of as the knitting needles, while the particular stitches required to fashion the wool into a pattern can be viewed as the chemical reaction.

"When we apply this to chemistry, you could say that the stitches –olefin metathesis reactions– have been around for some time. Chemists have been working for decades to figure out which needles do the work most efficiently," says Piers, whose discovery of more efficient olefin metathesis catalysts is now connected with his name.

"The results of this paper are valuable because we now know important details about a significant reaction," he explains. "The olefin metathesis reaction provides an extremely versatile method to break and reform carbon-carbon bonds in materials used in the manufacture of chemical products."

Materia Inc., a Pasadena-based chemical technology company, has the first rights to further develop and commercialize Piers' technology, which is licensed through UTI. Materia was keen to add Piers' technology to their library of catalysts to make their portfolio more versatile.

The Piers catalyst is related to the Nobel Prize-winning family of catalysts known as the Grubbs catalyst, named for their discoverer Robert Grubbs of Caltech. The Piers system has unique chemical attributes that Materia is hoping to exploit in new applications. While not yet as widely used as the Grubbs catalyst, there is strong growth potential for the Piers catalyst due to its high reactivity.

Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction by Edwin F. van der Eide and Warren E. Piers is published in Nature Chemistry at http://www.nature.com/nchem/index.html.

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca

Further reports about: CHEMISTRY Materia Nature Immunology Nobel Prize chemical reaction chemist

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>