Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemist stitches up speedier chemical reactions

New details about the Piers catalyst will help chemical industry improve products

Some people have streets named after them. Warren Piers, a chemistry professor at the University of Calgary, has a catalyst penned after him.

And in a paper published today in the online edition of Nature Chemistry, Piers and former graduate student Edwin van der Eide reveal the inner workings of the Piers catalyst at a molecular level of detail not previously available.

"These details are critical for the development of improved catalysts," says Piers, the paper's co-author and S. Robert Blair Professor of chemistry at the University of Calgary. "It will help us and others find new applications and improved reaction conditions for these catalysts."

A chemical catalyst is a molecule that speeds up a chemical reaction without being consumed in the reaction. Enzymes are nature's catalysts, but humankind has invented catalysts that improve and are often required to drive many commercially important chemical reactions.

Catalysts are so versatile that they are used in many chemical industries, ranging from commodity chemicals, those produced on a large scale, to fine chemicals, specialty products like pharmaceuticals, for example.

Catalysts allow companies to make products more economically (lower energy costs) and more selectively (less waste). The details revealed in this paper open the door to new products and materials, creating new companies and markets. One new application involves the production of biofuel hydrocarbon products from seed oils derived from plants.

The paper explores at a level of detail not seen before the inner workings of a chemical reaction called "olefin metathesis." If knitting a wool sweater, catalysts can be thought of as the knitting needles, while the particular stitches required to fashion the wool into a pattern can be viewed as the chemical reaction.

"When we apply this to chemistry, you could say that the stitches –olefin metathesis reactions– have been around for some time. Chemists have been working for decades to figure out which needles do the work most efficiently," says Piers, whose discovery of more efficient olefin metathesis catalysts is now connected with his name.

"The results of this paper are valuable because we now know important details about a significant reaction," he explains. "The olefin metathesis reaction provides an extremely versatile method to break and reform carbon-carbon bonds in materials used in the manufacture of chemical products."

Materia Inc., a Pasadena-based chemical technology company, has the first rights to further develop and commercialize Piers' technology, which is licensed through UTI. Materia was keen to add Piers' technology to their library of catalysts to make their portfolio more versatile.

The Piers catalyst is related to the Nobel Prize-winning family of catalysts known as the Grubbs catalyst, named for their discoverer Robert Grubbs of Caltech. The Piers system has unique chemical attributes that Materia is hoping to exploit in new applications. While not yet as widely used as the Grubbs catalyst, there is strong growth potential for the Piers catalyst due to its high reactivity.

Mechanistic insights into the ruthenium-catalysed diene ring-closing metathesis reaction by Edwin F. van der Eide and Warren E. Piers is published in Nature Chemistry at

Leanne Yohemas | EurekAlert!
Further information:

Further reports about: CHEMISTRY Materia Nature Immunology Nobel Prize chemical reaction chemist

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>