Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chemical synthesis could streamline drug design

17.08.2009
New method gives drug designers more flexibility

A team of MIT chemists has devised a new way to add fluorine to a variety of compounds used in many drugs and agricultural chemicals, an advance that could offer more flexibility and potential cost-savings in designing new drugs.

Drug developers commonly add fluorine atoms to drugs, such as the cholesterol-lowering rosuvastatin, to keep the body from breaking them down too quickly. Many of these drugs contain aromatic rings — a type of six-carbon ring — and attaching a fluorine atom to the rings can be a difficult, expensive process.

"It's hard to add fluorine at a late stage, once you have a complete molecule already put together, because traditional methods can be quite harsh with respect to temperature or other factors," says Stephen L. Buchwald, the Camille Dreyfus Professor of Chemistry at MIT.

In their new technique, Buchwald and his colleagues used a palladium catalyst to attach a fluorine atom to aromatic compounds. The technique could be used in the design and testing of new drugs, or to create new imaging agents for positron emission tomography (PET) scanning.

Donald Watson, a former postdoctoral associate in Buchwald's lab, now an assistant professor of chemistry at the University of Delaware, is lead author of a paper describing the new synthesis in the Aug. 13 early online edition of Science.

During the new process, the palladium catalyst removes a group of atoms called a triflate attached to the aromatic compound, then replaces it with a fluorine atom taken from a simple salt, such as cesium fluoride. This marks the first time chemists have replaced a triflate attached to an aromatic ring with a fluorine atom in one catalytic reaction.

"Many people believed it would not be possible to do this," says Buchwald.

"While the method is probably not currently efficient enough to be used in manufacturing, we are working to speed up the reaction, increase its efficiency and make it more environmentally and user-friendly," says Buchwald. "We ultimately hope to make it general enough to be useful for manufacturing."

The research was funded by the National Institutes of Health. Other authors of the paper are visiting student Mingjuan Su and chemistry graduate student Georgiy Teverovskiy, and postdoctoral fellows Yong Zhang, Jorgé García-Fortanet

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>