Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 for Chemical Synthesis

10.05.2013
Carbon dioxide is the most common source of carbon in nature and an inexpensive building block that is useful for the chemical industry. However, because of its high stability, it is not easy to induce CO2 to react. In the journal Angewandte Chemie, German scientists have now reported a universally applicable method for the catalytic methylation of amines with CO2.

A variety of methods have previously been developed with the goal of attaching CO2 to various organic molecules to convert them into intermediate products for chemical syntheses. Indispensable to all of these techniques is a suitable catalyst that activates the CO2 for the reaction in question.

To date, no one has developed a general method for the catalytic methylation of amines by CO2. In this reaction, CO2 is bound to the nitrogen atom of the amino group and is converted (reduced) to a methyl group (–CH3). Amine methylation methods currently available generally depend on toxic substances.

Matthias Beller and his co-workers at the Leibniz Institute for Catalysis in Rostock have now described a catalyst that is able to generally convert carbon dioxide and diverse amines into products that are methylated at the nitrogen atom.

The secret of their success is a ruthenium complex that reacts with a special phosphoric ligand in situ to become an active catalyst. In addition, phenylsilane, an organosilicon compound, is used as a reducing agent.

For the actual reaction, the metal complex, ligand, and silane, are placed in an autoclave with toluene as solvent and the amine to be methylated. CO2 is introduced at a pressure of 30 bar and the mixture is stirred at 100 °C for several hours.

This new catalytic process makes it possible to selectively methylate almost all types of amines—secondary and primary, aromatic and aliphatic—in high yields. The amines are converted to the desired tertiary amines and diamines. Even urea can be used as a starting material. In contrast to many other known methylation methods, the presence of other functional groups, such as nitrile, olefin, ether, ester, or hydroxy groups pose no problem. They are not affected so protecting groups are not needed.

“We have demonstrated for the first time that the general methylation of organic substrates using silanes and CO2 as a simple carbon source is possible,“ says Beller. “The catalyst consists of a commercially available ruthenium complex and ligand formerly developed by our group.”

About the Author
Professor Matthias Beller is Director of the Leibniz Institute for Catalysis in Rostock. His research interests are in the area of homogeneous catalysis and organic synthesis.

Author: Matthias Beller, Leibniz-Institut für Katalyse e.V., Rostock (Germany), http://www.catalysis.de/Beller-Matthias.239.0.html

Title: A General Catalytic Methylation of Amines Using Carbon Dioxide
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301349

Matthias Beller | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.catalysis.de/Beller-Matthias.239.0.html

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>