Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 for Chemical Synthesis

10.05.2013
Carbon dioxide is the most common source of carbon in nature and an inexpensive building block that is useful for the chemical industry. However, because of its high stability, it is not easy to induce CO2 to react. In the journal Angewandte Chemie, German scientists have now reported a universally applicable method for the catalytic methylation of amines with CO2.

A variety of methods have previously been developed with the goal of attaching CO2 to various organic molecules to convert them into intermediate products for chemical syntheses. Indispensable to all of these techniques is a suitable catalyst that activates the CO2 for the reaction in question.

To date, no one has developed a general method for the catalytic methylation of amines by CO2. In this reaction, CO2 is bound to the nitrogen atom of the amino group and is converted (reduced) to a methyl group (–CH3). Amine methylation methods currently available generally depend on toxic substances.

Matthias Beller and his co-workers at the Leibniz Institute for Catalysis in Rostock have now described a catalyst that is able to generally convert carbon dioxide and diverse amines into products that are methylated at the nitrogen atom.

The secret of their success is a ruthenium complex that reacts with a special phosphoric ligand in situ to become an active catalyst. In addition, phenylsilane, an organosilicon compound, is used as a reducing agent.

For the actual reaction, the metal complex, ligand, and silane, are placed in an autoclave with toluene as solvent and the amine to be methylated. CO2 is introduced at a pressure of 30 bar and the mixture is stirred at 100 °C for several hours.

This new catalytic process makes it possible to selectively methylate almost all types of amines—secondary and primary, aromatic and aliphatic—in high yields. The amines are converted to the desired tertiary amines and diamines. Even urea can be used as a starting material. In contrast to many other known methylation methods, the presence of other functional groups, such as nitrile, olefin, ether, ester, or hydroxy groups pose no problem. They are not affected so protecting groups are not needed.

“We have demonstrated for the first time that the general methylation of organic substrates using silanes and CO2 as a simple carbon source is possible,“ says Beller. “The catalyst consists of a commercially available ruthenium complex and ligand formerly developed by our group.”

About the Author
Professor Matthias Beller is Director of the Leibniz Institute for Catalysis in Rostock. His research interests are in the area of homogeneous catalysis and organic synthesis.

Author: Matthias Beller, Leibniz-Institut für Katalyse e.V., Rostock (Germany), http://www.catalysis.de/Beller-Matthias.239.0.html

Title: A General Catalytic Methylation of Amines Using Carbon Dioxide
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301349

Matthias Beller | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.catalysis.de/Beller-Matthias.239.0.html

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>