Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CO2 for Chemical Synthesis

10.05.2013
Carbon dioxide is the most common source of carbon in nature and an inexpensive building block that is useful for the chemical industry. However, because of its high stability, it is not easy to induce CO2 to react. In the journal Angewandte Chemie, German scientists have now reported a universally applicable method for the catalytic methylation of amines with CO2.

A variety of methods have previously been developed with the goal of attaching CO2 to various organic molecules to convert them into intermediate products for chemical syntheses. Indispensable to all of these techniques is a suitable catalyst that activates the CO2 for the reaction in question.

To date, no one has developed a general method for the catalytic methylation of amines by CO2. In this reaction, CO2 is bound to the nitrogen atom of the amino group and is converted (reduced) to a methyl group (–CH3). Amine methylation methods currently available generally depend on toxic substances.

Matthias Beller and his co-workers at the Leibniz Institute for Catalysis in Rostock have now described a catalyst that is able to generally convert carbon dioxide and diverse amines into products that are methylated at the nitrogen atom.

The secret of their success is a ruthenium complex that reacts with a special phosphoric ligand in situ to become an active catalyst. In addition, phenylsilane, an organosilicon compound, is used as a reducing agent.

For the actual reaction, the metal complex, ligand, and silane, are placed in an autoclave with toluene as solvent and the amine to be methylated. CO2 is introduced at a pressure of 30 bar and the mixture is stirred at 100 °C for several hours.

This new catalytic process makes it possible to selectively methylate almost all types of amines—secondary and primary, aromatic and aliphatic—in high yields. The amines are converted to the desired tertiary amines and diamines. Even urea can be used as a starting material. In contrast to many other known methylation methods, the presence of other functional groups, such as nitrile, olefin, ether, ester, or hydroxy groups pose no problem. They are not affected so protecting groups are not needed.

“We have demonstrated for the first time that the general methylation of organic substrates using silanes and CO2 as a simple carbon source is possible,“ says Beller. “The catalyst consists of a commercially available ruthenium complex and ligand formerly developed by our group.”

About the Author
Professor Matthias Beller is Director of the Leibniz Institute for Catalysis in Rostock. His research interests are in the area of homogeneous catalysis and organic synthesis.

Author: Matthias Beller, Leibniz-Institut für Katalyse e.V., Rostock (Germany), http://www.catalysis.de/Beller-Matthias.239.0.html

Title: A General Catalytic Methylation of Amines Using Carbon Dioxide
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201301349

Matthias Beller | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.catalysis.de/Beller-Matthias.239.0.html

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>