Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chemical probe provides tool to investigate role of malignant brain tumor domains

01.03.2013
In an article published as the cover story of the March 2013 issue of Nature Chemical Biology, Lindsey James, PhD, research assistant professor in the lab of Stephen Frye, Fred Eshelman Distinguished Professor in the UNC School of Pharmacy and member of the UNC Lineberger Comprehensive Cancer Center, announced the discovery of a chemical probe that can be used to investigate the L3MBTL3 methyl-lysine reader domain. The probe, named UNC1215, will provide researchers with a powerful tool to investigate the function of malignant brain tumor (MBT) domain proteins in biology and disease.

"Before this there were no known chemical probes for the more than 200 domains in the human genome that recognize methyl lysine. In that regard, it is a first in class compound. The goal is to use the chemical probe to understand the biology of the proteins that it targets," said Dr. James.


The chemical probe UNC1215 will be used to investigate the function of malignant brain tumor domain protein, L3MBTL3, and study its role in different signaling pathways and disease.

Credit: Frye Lab, UNC

Chromatin regulatory pathways play a fundamental role in gene expression and disease development, especially in the case of cancer. While many chemical probes work through the inhibition of enzyme activity, L3MBTL3 functions as a mediator of protein-to-protein interactions, which have been historically difficult to target with small, drug-like molecules.The researchers found three to four further disease subtypes within TN tumors, with more than 75 percent of the tumors falling into the basal-like subtype. Further research is needed to identify the distinct biomarkers shared by the expanded subtypes of TN cancers. The ultimate goal will be to target the individual biomarkers of these subtypes and create therapies that target their individual biology, according to Dr. Perou.

"Many people believe that protein-protein interactions are difficult to target. Often they have a large surface area, so it is hard for small molecules to go in and intervene," said Dr. James.

Almost 40 percent of the genes that drive cancer can be mapped to dysfunction within signaling pathways. In the last five years, chemical probe development has allowed researchers to make fundamental observations of the role of these pathways in cancer development, as well as pointing to potential targets for new therapies. Each of the complex interactions within the signaling pathways represents a potential point where a therapy can be applied, and the probes allow researchers to interact with these processes at the molecular level and observe the overall effect of their perturbation on the disease state.

In a 2008 Nature Chemical Biology commentary, Dr. Frye outlined the qualities that make a good chemical probe. To Frye, a good chemical probe must be highly selective to enable specific questions to be asked and it must function as well in a cell as in the test tube, providing clear quantitative data with a well understood mechanism of action in either situation. It also must be available to all academic researchers without restrictions on its use, a criteria that the L3MBTL3 probe fulfills through the Frye lab's commitment to provide researchers with the probe free of charge on request and UNC1215 is already available through commercial vendors as well.

This research was supported by NIH grants (RC1GM090732 and R01GM100919) and the University Cancer Research Fund.

William Davis | EurekAlert!
Further information:
http://www.med.unc.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>