Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical physics: No place for nitrogen

21.08.2012
The finding that nitrogen can combine with oxygen in zirconia to form NO molecules may lead to safer materials for nuclear reactors

The understanding of oxidation and corrosion processes is essential for a wide range of applications, particularly those related to the nuclear industry. Zhi Gen Yu at the A*STAR Institute of High Performance Computing and co-workers have now performed calculations to study how nitrogen degrades zirconium — a material widely used for cladding fuel rods in nuclear reactors — and found that nitrogen atoms entering zirconia (the oxidized form of zirconium) do not simply replace oxygen atoms.

Instead, the researchers showed that nitrogen atoms combine with oxygen atoms to form nitrosyl (NO) radicals, which bind the zirconium lattice (see image). They believe that this mechanism promotes the corrosion of zirconia in nuclear reactors.

The nuclear disaster in Fukushima last year is a recent and drastic example that illustrates the importance of studying corrosion processes in zirconium, with the goal of developing methods to prevent deteriorating processes. “Following the accident in Fukushima there were reports that due to the high temperatures and the presence of steam, oxidation of the zirconium cladding — designed to protect the nuclear-fuel rods — produced hydrogen, which only exacerbated the heat problem,” explains Yu.

An important property of zirconium is that, when exposed to air, it naturally forms a thin layer of zirconia, which acts as a barrier against further oxidation and corrosion. The stability of zirconia is normally very high. At elevated temperatures (as present when a reactor core overheats), however, the stability decreases substantially and the zirconia layer loses its protective function — just when it is most needed.

Scientists have yet to grasp the mechanism underlying the corrosion of zirconium. However, they know that one of the factors that influence the corrosion process is nitrogen impurities. To better understand the role of nitrogen in corrosion when it enters zirconia, Yu and co-workers have calculated the probability of every chemical processes that may happen in zirconia as nitrogen molecules intrude. They found that among all possible basic structures associated with nitrogen, the most likely species to form is NO molecules, which then occupy the sites where single oxygen atoms originally resided.

“We expect that for every two nitrogen atoms introduced, three oxygen atoms in the lattice are removed,” says Yu. “Our results suggest that two of the removed oxygen atoms combine with nitrogen to form NO defects, whereas the remaining oxygen atoms escape, leaving behind vacancies. Such vacancies could provide paths for oxygen diffusion, which promotes the rate of corrosion.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References

Yu, Z. G., Zhang, J., Singh, D. J. & Wu, P. First-principles investigation of nitrosyl formation in zirconia. Physical Review B 85, 144106 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>