Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical engineers at UCSB design molecular probe to study disease

07.04.2011
Chemical engineers at UC Santa Barbara expect that their new process to create molecular probes may eventually result in the development of new drugs to treat cancer and other illnesses.

Their work, reported in the journal Chemistry & Biology, published by Cell Press, describes a new strategy to build molecular probes to visualize, measure, and learn about the activities of enzymes, called proteases, on the surface of cancer cells.

Patrick Daugherty, senior author and professor of chemical engineering at UCSB, explained that the probes are effective at understanding proteases involved in tumor metastasis.

"Tumor metastasis is widely regarded as the cause of death for cancer patients," said Daugherty. "It's not usually the primary tumor that causes death. Metastasis is mediated by proteases, like the one we are studying here. These proteases can enable tumor cells to separate and degrade surrounding tissue, and then migrate to sites distant from the primary tumor. The tumor doesn't just fall apart. There are many events that must occur for a tumor to release cancerous cells into the blood stream that can circulate and end up in other tissues such as liver or bone."

The probes allowed the researchers, for the first time, to measure directly the activity of a protease involved in metastasis. They did this by adding their probe into a dish of tumor cells. They then measured the activity of this protease that breaks down collagen –– the single most abundant protein (by mass) in the human body.

"We have immediate plans to use similar probes to effectively distinguish metastatic HER2 positive tumors, one of the most commonly used biomarkers of breast cancer," said Daugherty. "A significant fraction of patients have HER2 positive tumors but we don't know which of those tumors is going to metastasize yet. But our ability to make these probes can allow us to identify which of those HER2 positive tumors have the ability to break down that surrounding tissue, to detach from the primary tumor, and to establish a separate tumor somewhere else in the body."

The authors designed the molecular probe to be recognized by a single protease rather than by the many proteases that are present in human tissues. That is half of the probe. The other half of the probe involves an optical technique used to measure activity. This approach relies upon the use of two engineered fluorescent proteins, derived from marine organisms, that absorb and emit light in a process called FRET, or Forster resonance energy transfer.

To prepare the probes, the researchers introduced a gene that encodes the probe into the bacteria E. coli. Then they produced and purified significant quantities of the probe. All of the information needed for the probe is encoded by a DNA sequence. The probes are easy and inexpensive to produce, as well as easily shared with other researchers.

In addition to studying cancer, similarly constructed probes have ramifications for studying Alzheimer's disease, arthritis and connective tissue diseases, bacterial infections, viruses, and many other diseases.

"The fact that you can generalize the concept, and the way you make these probes, to many systems, makes it attractive," said Daugherty. "We happen to study the activity of this protease and a certain type of tumor cells that are derived from cancer patients. But you could apply this to hundreds of molecules and really develop a working understanding of how groups of proteases function together in cell biology."

In individuals with rheumatoid arthritis, for example, there is increased production of proteases, including the one studied by Daugherty's team. This protease mediates collagen breakdown and joint destruction. "If you've got an enzyme that can chew up collagen and you've got lots of collagen in your joints, then you would expect that you would see more rapid degradation of the joint by those proteases," said Daugherty.

Daugherty's research group has created approximately 25 probes analogous to the one presented in the paper. They are building a panel of about 100 probes and will use this panel to characterize how different proteases function. This investigation could lead to new drug therapies for a variety of diseases.

The first author on the paper is Daugherty's former graduate student, Abeer Jabaiah, who is applying a similar process to another protease involved in tumor metastasis as a postdoctoral fellow in Daugherty's lab. Funding for this work was provided by the National Institutes of Health through the National Cancer Institute's Center of Cancer Nanotechnology Excellence and the National Heart, Lung, and Blood Institute's Program of Excellence in Nanotechnology.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>