Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Engineers Use Gold To Discover Breakthrough for Creating Biorenewable Chemicals

21.10.2010
University of Virginia chemical engineers Robert J. Davis and Matthew Neurock have uncovered the key features that control the high reactivity of gold nanoparticles in a process that oxidizes alcohols in water. The research is an important first step in unlocking the potential of using metal catalysts for developing biorenewable chemicals.

The scientific discovery could one day serve as the foundation for creating a wide range of consumer products from biorenewable carbon feedstocks, as opposed to the petroleum-based chemicals currently being used as common building blocks for commodities such as cosmetics, plastics, pharmaceuticals and fuels.

The researchers' paper on the subject — "Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis" — appears in the October issue of the journal Science.

The U.Va. researchers have shown that gold – the most inert of all metals – has high catalytic reactivity when placed in alkaline water. They studied the mechanism for oxidizing ethanol and glycerol into acids, such as acetic acid and glyceric acid, which are used in everything from food additives to glues, by using gold and platinum as catalysts.

"We've shown that by better understanding the oxidation chemistry on gold and other metal catalysts, we can begin to outline a path for developing a range of different reactions needed to transition from a petroleum-based chemical industry to one that uses biorenewable carbon feedstocks," said Davis, principal investigator on the research paper and professor and chair of the Department of Chemical Engineering in U.Va.'s School of Engineering and Applied Science.

By using water to help oxidize the alcohols with oxygen in the air as opposed to using expensive inorganic oxidants and harmful organic solvents, the growing field of biorenewable chemicals aims to offer a more sustainable, environmentally safe alternative to traditional petrochemical processes.

Until the completion of the U.Va. group's research, it wasn't fully understood how water can play an important role in the oxidation catalysis of alcohols. In the past, catalysis in water hasn't been a major issue for the chemical industry: Because petroleum and many petroleum products aren't water-soluble, water hasn't generally been considered to be a useful solvent.

The researchers, all from the Department of Chemical Engineering in U.Va.'s Engineering School, combined concepts in electrochemistry and catalysis to uncover the critical factors in the oxidation of alcohols to chemical intermediates.

The research also required merging experimental lab work led by Davis with Neurock's expertise in the theory of catalytic chemistry. Graduate students Bhushan N. Zope and David D. Hibbitts were essential members of the investigative teams.

REPORTERS AND EDITORS: To arrange interviews with Robert J. Davis and Matthew Neurock at the University of Virginia, contact Zak Richards at 434-924-1383 or zr8n@virginia.edu.

Zak Richards | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>