Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Engineers Use Gold To Discover Breakthrough for Creating Biorenewable Chemicals

21.10.2010
University of Virginia chemical engineers Robert J. Davis and Matthew Neurock have uncovered the key features that control the high reactivity of gold nanoparticles in a process that oxidizes alcohols in water. The research is an important first step in unlocking the potential of using metal catalysts for developing biorenewable chemicals.

The scientific discovery could one day serve as the foundation for creating a wide range of consumer products from biorenewable carbon feedstocks, as opposed to the petroleum-based chemicals currently being used as common building blocks for commodities such as cosmetics, plastics, pharmaceuticals and fuels.

The researchers' paper on the subject — "Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis" — appears in the October issue of the journal Science.

The U.Va. researchers have shown that gold – the most inert of all metals – has high catalytic reactivity when placed in alkaline water. They studied the mechanism for oxidizing ethanol and glycerol into acids, such as acetic acid and glyceric acid, which are used in everything from food additives to glues, by using gold and platinum as catalysts.

"We've shown that by better understanding the oxidation chemistry on gold and other metal catalysts, we can begin to outline a path for developing a range of different reactions needed to transition from a petroleum-based chemical industry to one that uses biorenewable carbon feedstocks," said Davis, principal investigator on the research paper and professor and chair of the Department of Chemical Engineering in U.Va.'s School of Engineering and Applied Science.

By using water to help oxidize the alcohols with oxygen in the air as opposed to using expensive inorganic oxidants and harmful organic solvents, the growing field of biorenewable chemicals aims to offer a more sustainable, environmentally safe alternative to traditional petrochemical processes.

Until the completion of the U.Va. group's research, it wasn't fully understood how water can play an important role in the oxidation catalysis of alcohols. In the past, catalysis in water hasn't been a major issue for the chemical industry: Because petroleum and many petroleum products aren't water-soluble, water hasn't generally been considered to be a useful solvent.

The researchers, all from the Department of Chemical Engineering in U.Va.'s Engineering School, combined concepts in electrochemistry and catalysis to uncover the critical factors in the oxidation of alcohols to chemical intermediates.

The research also required merging experimental lab work led by Davis with Neurock's expertise in the theory of catalytic chemistry. Graduate students Bhushan N. Zope and David D. Hibbitts were essential members of the investigative teams.

REPORTERS AND EDITORS: To arrange interviews with Robert J. Davis and Matthew Neurock at the University of Virginia, contact Zak Richards at 434-924-1383 or zr8n@virginia.edu.

Zak Richards | Newswise Science News
Further information:
http://www.virginia.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>