Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical engineers help decipher mystery of neurofibrillary tangle formation in Alzheimer's brains

02.11.2011
Neurofibrillary tangles – odd, twisted clumps of protein found within nerve cells – are a pathological hallmark of Alzheimer's disease.

The tangles, which were first identified in the early 1900s by German psychiatrist and neuropathologist Aloysius Alzheimer, are formed when changes in a protein called tau cause it to aggregate in an insoluble mass in the cytoplasm of cells. Normally, the tau protein is involved in the formation of microtubules, hollow filaments that provide cells with support and structure; abnormal tau tangles, however, cause that structure to break down, and lead to cell death.

Researchers have long puzzled over just what produces the tangles – and, indeed, if they are a cause or a side effect of Alzheimer's and similar neurodegenerative diseases. Now, new research by Eva Chi, an assistant professor of chemical engineering at the University of New Mexico, and her colleagues suggests that changes to the lipid membranes of nerve cells initiate tangle formation.

"Proteins in the brain do not aggregate spontaneously to form amyloid fibrils to cause diseases," says Chi. Rather, she says, "there are physiological triggers that cause these proteins to start aggregating and the lipid membrane may serve such a role." At the AVS Symposium in Nashville, Tenn., held Oct. 30 – Nov. 4, Chi will discuss these tangling triggers and their implications for the development of new Alzheimer's therapies.

Using a combination of techniques, including fluorescence microscopy and X-ray and neutron scattering imaging, Chi and her colleagues found that tau proteins inside nerve cells interact strongly with negatively charged lipids, which are found on the inner surface of cell membranes. "In diseased brains, tau proteins become hyperphosphorylated" – adorned with multiple phosphate (PO43-) groups – "and detach from microtubules. They can then interact with the negatively charged lipids on the cell membrane and start to aggregate into fibrils and cause disease."

When tau proteins interact with the lipid membrane, they can damage the structure of the membrane, "which can possibly make the membranes 'leaky' and cause neurons to die," Chi explains. "There has been much uncertainty about what causes neurodegeneration in these diseases, but now the field is converging on the idea that neuronal death in Alzheimer's disease is caused by the proteins acquiring toxicity as they aggregate."

The researchers suggests that compounds that prevent the proteins from interacting with the lipid membrane – or protect the membrane from being disrupted – could offer hope to Alzheimer's patients. "We are currently looking at how naturally occurring flavonoids [antioxidants found in plants] can protect the cells from protein aggregate-induced toxicity and have found that they reduce protein interaction with membranes," Chi says.

The AVS 58th International Symposium & Exhibition will be held Oct. 30 – Nov. 4 at the Nashville Convention Center.

Presentation NT+AS-WeA8, "Interaction of Alzheimer's Disease Tau Protein with Model Lipid Membranes," is at 4:20 p.m. on Wednesday, Nov. 2.

USEFUL LINKS:

Main meeting website: http://www2.avs.org/symposium/AVS58/pages/greetings.html

Technical Program: http://www2.avs.org/symposium

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>