Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical detection: A purer solution

11.09.2014

A separation method that isolates protein-protected gold clusters enables improved sensing of toxic mercury compounds and pesticides.

Fluorescence-based detection of pesticides and other environmentally harmful chemicals is limited by the ability of current methods to reliably and selectively sense specific chemical species. A*STAR researchers have now developed a co-precipitation process that removes excess reagents to improve the efficiency of fluorescent sensors[1].


Schematic illustrations and fluorescence images depicting the purification of BSA-protected gold (Au25) clusters through the centrifugation and removal of free BSA (green squiggles).

Reproduced, with permission, from Ref. 1 © 2014, Royal Society of Chemistry

The fluorescence properties of protein-protected gold clusters make them useful for detecting and sensing various chemical species, such as hydrogen peroxide and mercury. However, the detection sensitivity is hampered by any free protein molecules that remain in the cluster solution, as these proteins may reduce the fluorescence or interact with the chemical species under detection. Commonly used methods for isolating protein-protected gold clusters (for example, ultracentrifugation, chromatography and dialysis) are often blighted by practical problems such as solubility issues or insufficient separation if the protein is too large or similar in size to the protected metal clusters.

Ming-Yong Han, Yong-Wei Zhang and colleagues at the A*STAR Institute of Materials Research and Engineering, the A*STAR Institute of High Performance Computing and the National University of Singapore have discovered a simple way to remove excess bovine serum albumin (BSA) from a solution of BSA-protected gold (Au25) clusters following modification of the clusters.

Their separation method involves the co-precipitation of Au25 clusters and zinc hydroxide in a basic solution, followed by centrifugation and removal of the supernatant, which contains the free BSA (see image). When re-dispersed in buffer solution, the precipitate forms a transparent solution of BSA-protected gold clusters.

Han’s team proposes that the co-precipitation process involves the binding of hydroxide ions with the surface Au(I) ions of the clusters and the subsequent interaction between zinc ions and hydroxide ions, resulting in zinc hydroxide being precipitated.

The mechanism is also effective using copper (II), cadmium (II) and lead (II) ions in strong, basic solutions and leads to the formation of the corresponding metal hydroxides.

“Once purified, the BSA-protected clusters are highly sensitive in detecting hydrogen peroxide and mercury ions and prove to be a visually selective detection method for four different pesticides,” says Han.

In the future, the team intends to investigate the use of the surface-binding interactions to grow gold nanoparticles from the clusters. “We also hope to use the purified clusters to develop new fluorescent sensors that have a high sensitivity and selectivity,” explains Han. “Moreover, we plan to extend the purification method to other clusters, such as platinum and silver, and study their atomic structure and potential for enhanced performance in sensing and detection applications.”

Reference

1. Guan, G., Zhang, S.-Y., Cai, Y., Liu, S., Bharathi, M. S. et al. Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. Chemical Communications 50, 5703–5705 (2014).

Associated links

Lee Swee Heng | Research SEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR Chemical Science clusters detecting hydroxide ions methods peroxide pesticides purification sensitivity species zinc

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>