Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemical detection: A purer solution


A separation method that isolates protein-protected gold clusters enables improved sensing of toxic mercury compounds and pesticides.

Fluorescence-based detection of pesticides and other environmentally harmful chemicals is limited by the ability of current methods to reliably and selectively sense specific chemical species. A*STAR researchers have now developed a co-precipitation process that removes excess reagents to improve the efficiency of fluorescent sensors[1].

Schematic illustrations and fluorescence images depicting the purification of BSA-protected gold (Au25) clusters through the centrifugation and removal of free BSA (green squiggles).

Reproduced, with permission, from Ref. 1 © 2014, Royal Society of Chemistry

The fluorescence properties of protein-protected gold clusters make them useful for detecting and sensing various chemical species, such as hydrogen peroxide and mercury. However, the detection sensitivity is hampered by any free protein molecules that remain in the cluster solution, as these proteins may reduce the fluorescence or interact with the chemical species under detection. Commonly used methods for isolating protein-protected gold clusters (for example, ultracentrifugation, chromatography and dialysis) are often blighted by practical problems such as solubility issues or insufficient separation if the protein is too large or similar in size to the protected metal clusters.

Ming-Yong Han, Yong-Wei Zhang and colleagues at the A*STAR Institute of Materials Research and Engineering, the A*STAR Institute of High Performance Computing and the National University of Singapore have discovered a simple way to remove excess bovine serum albumin (BSA) from a solution of BSA-protected gold (Au25) clusters following modification of the clusters.

Their separation method involves the co-precipitation of Au25 clusters and zinc hydroxide in a basic solution, followed by centrifugation and removal of the supernatant, which contains the free BSA (see image). When re-dispersed in buffer solution, the precipitate forms a transparent solution of BSA-protected gold clusters.

Han’s team proposes that the co-precipitation process involves the binding of hydroxide ions with the surface Au(I) ions of the clusters and the subsequent interaction between zinc ions and hydroxide ions, resulting in zinc hydroxide being precipitated.

The mechanism is also effective using copper (II), cadmium (II) and lead (II) ions in strong, basic solutions and leads to the formation of the corresponding metal hydroxides.

“Once purified, the BSA-protected clusters are highly sensitive in detecting hydrogen peroxide and mercury ions and prove to be a visually selective detection method for four different pesticides,” says Han.

In the future, the team intends to investigate the use of the surface-binding interactions to grow gold nanoparticles from the clusters. “We also hope to use the purified clusters to develop new fluorescent sensors that have a high sensitivity and selectivity,” explains Han. “Moreover, we plan to extend the purification method to other clusters, such as platinum and silver, and study their atomic structure and potential for enhanced performance in sensing and detection applications.”


1. Guan, G., Zhang, S.-Y., Cai, Y., Liu, S., Bharathi, M. S. et al. Convenient purification of gold clusters by co-precipitation for improved sensing of hydrogen peroxide, mercury ions and pesticides. Chemical Communications 50, 5703–5705 (2014).

Associated links

Lee Swee Heng | Research SEA News
Further information:

Further reports about: A*STAR Chemical Science clusters detecting hydroxide ions methods peroxide pesticides purification sensitivity species zinc

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>