Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chemical Chaperones Have Helped Proteins Do Their Jobs for Billions of Years

An ancient chemical, present for billions of years, appears to have helped proteins function properly since time immemorial.

Proteins are the body's workhorses, and like horses they often work in teams. There exists a modern day team of multiple chaperone proteins that help other proteins fold into the complex 3D shapes they must achieve to function. This is necessary to avert many serious diseases caused when proteins misbehave.

But what happened before this team of chaperones was formed? How did the primordial cells that were the ancestors of modern life keep their proteins folded and functional?

Scientists from the University of Michigan discovered that an extremely simple, ancient chemical called polyphosphate can perform the role of a chaperone. It likely played that role billions of years ago, and still keeps its old job today.

"Polyphosphate has likely been present since life began on Earth, and is thought to exist in all living creatures," said postdoctoral researcher Michael Gray. "This means it's extremely important, but no one really knew what it was for.

"We found that bacteria accumulate polyphosphate to defend against disease-causing, protein unfolding conditions. Purified polyphosphate works well to protect proteins in the test tube, showing that this simple chemical can substitute for the complex team of protein chaperones."

The discovery unravels a long­standing evolutionary mystery that could lead to new strategies for treating protein folding diseases such as Alzheimer's and Parkinson's, which occur when proteins misfold or pile up.

"Once we know how to manipulate the levels of polyphosphate in cells and organisms, we should be able to improve protein folding and develop countermeasures against protein folding diseases," said Ursula Jakob, the U-M professor in charge of the research.

Their work appears in the journal Molecular Cell. It was funded by the National Institutes of Health and Howard Hughes Medical Institute. U-M co-­authors include Wei-­Yun Wholey, Claudia Cremers, Robert Bender, Antje Mueller-Schickert, Nico Wagner, Nathaniel Hock, Adam Krieger, Erica Smith and James Bardwell.

Laura Bailey | Newswise
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>