Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The last checkpoint to T cell fate

05.07.2010
A research team in Japan has linked a developmental checkpoint in the differentiation of hematopoietic progenitors into specific T cell lineages to the activity of a single gene encoding a transcription factor. Reported in Science this week, the discovery lends support to a new model for the development of blood cells lineages.

While varying widely in function, all blood cells share a common origin in progenitors known as hematopoietic stem cells (HSC). In textbook theory, HSCs branch early on into two progenitor cell types, one of which, known as the common lymphoid progenitor (CLP), later differentiates into T and B cells. According to this model, T and B cells lose the potential to develop into non-lymphocytes (myeloid cells) once they pass the CLP branching point.

In a model put forth nearly ten years ago, the researchers proposed a radically different picture in which progenitor cells retain the potential to generate myeloid cells across all branches of development. In the current research, the researchers sought to substantiate this theory by pinpointing the moment at which T cell progenitors lose the potential to develop into myeloid cells, a key step in determining cell fate.

In experiments with mouse HSCs cultured on immobilized delta-like 4 proteins, the researchers found that progenitors developing toward T cells were arrested in the absence of so-called feeder cells, which support survival and growth. The arrested cells then entered a cycle of self-renewal in which they replicated but did not further develop. Testing of various conditions revealed that reduction of the cytokine interleukin-7 (IL-7), possibly corresponding to an environmental signal in the thymus, triggered resumption of development and differentiation into T cells.

... more about:
»B cells »Bcl11b »CLP »HSC »IL-7 »T cells »blood cell »cell type

Placing the final piece in the puzzle, the researchers discovered that T cell progenitors in the thymus from mice deficient in the gene Bcl11b exhibited the same halted development and self-renewal cycle, while further experiments connected up-regulation of the transcription factor encoded by this gene to IL-7 levels. Together, the findings identify Bcl11b as a “master gene” governing the final step toward differentiation into T cells, confirming the proposed model and heralding a paradigm shift in our understanding of blood cell lineages.

For more information, please contact:

Dr. Hiroshi Kawamoto
Laboratory for Lymphocyte Development
RIKEN Research Center for Allergy and Immunology (RCAI)
Tel: +81-(0)45-503-7010 / Fax: +81-(0)45-503-7009
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: B cells Bcl11b CLP HSC IL-7 T cells blood cell cell type

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>