Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The last checkpoint to T cell fate

05.07.2010
A research team in Japan has linked a developmental checkpoint in the differentiation of hematopoietic progenitors into specific T cell lineages to the activity of a single gene encoding a transcription factor. Reported in Science this week, the discovery lends support to a new model for the development of blood cells lineages.

While varying widely in function, all blood cells share a common origin in progenitors known as hematopoietic stem cells (HSC). In textbook theory, HSCs branch early on into two progenitor cell types, one of which, known as the common lymphoid progenitor (CLP), later differentiates into T and B cells. According to this model, T and B cells lose the potential to develop into non-lymphocytes (myeloid cells) once they pass the CLP branching point.

In a model put forth nearly ten years ago, the researchers proposed a radically different picture in which progenitor cells retain the potential to generate myeloid cells across all branches of development. In the current research, the researchers sought to substantiate this theory by pinpointing the moment at which T cell progenitors lose the potential to develop into myeloid cells, a key step in determining cell fate.

In experiments with mouse HSCs cultured on immobilized delta-like 4 proteins, the researchers found that progenitors developing toward T cells were arrested in the absence of so-called feeder cells, which support survival and growth. The arrested cells then entered a cycle of self-renewal in which they replicated but did not further develop. Testing of various conditions revealed that reduction of the cytokine interleukin-7 (IL-7), possibly corresponding to an environmental signal in the thymus, triggered resumption of development and differentiation into T cells.

... more about:
»B cells »Bcl11b »CLP »HSC »IL-7 »T cells »blood cell »cell type

Placing the final piece in the puzzle, the researchers discovered that T cell progenitors in the thymus from mice deficient in the gene Bcl11b exhibited the same halted development and self-renewal cycle, while further experiments connected up-regulation of the transcription factor encoded by this gene to IL-7 levels. Together, the findings identify Bcl11b as a “master gene” governing the final step toward differentiation into T cells, confirming the proposed model and heralding a paradigm shift in our understanding of blood cell lineages.

For more information, please contact:

Dr. Hiroshi Kawamoto
Laboratory for Lymphocyte Development
RIKEN Research Center for Allergy and Immunology (RCAI)
Tel: +81-(0)45-503-7010 / Fax: +81-(0)45-503-7009
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

Further reports about: B cells Bcl11b CLP HSC IL-7 T cells blood cell cell type

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>