Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Charles Darwin really did have advanced ideas about the origin of life

When Charles Darwin published The Origin of Species 150 years ago, he deliberately avoided the subject of the origin of life.

This, coupled with the mention of the 'Creator' in the last paragraph of the book, led us to believe he was not willing to commit on the matter. An international team, led by Juli Peretó of the Cavanilles Institute in Valencia, now refutes that idea and shows that the British naturalist did explain in other documents how our first ancestors could have come into being.

"All organic beings that have lived on Earth could be descended from some primordial form", explained Darwin in The Origin of Species in 1859. Despite this statement, the scientist took it upon himself to understand the evolutional processes underlying biodiversity.

"Darwin was convinced of the incredible importance of this issue for his theory and he had an amazingly modern materialist and evolutional vision about the transition of inanimate chemical matter into living matter, despite being very aware of Pasteur's experiments in opposition to spontaneous generation", Juli Peretó, principal author of this study and researcher at the Cavanilles Institute of Evolutional Biology and Biodiversity at the University of Valencia, explains to SINC.

The study, which is published in the latest issue of the journal Origins of Life and Evolution of Biospheres, demonstrates that Darwin had an advanced idea on the origin of the first species, and was troubled by the problem. "It is utterly wrong to think that he was invoking a divine intervention; it is also well documented that the mention of the 'Creator' in The Origin of the Species was an addition for appearance's sake that he later regretted", affirms Peretó.

According to the researchers, all Darwin's opinions on the origin of life can be found in his private correspondence and in his notebooks. The exception is a review of a book on foraminiferous microorganisms published in 1863 in the London social club Athenaeum, where Darwin "lets his opinion on the spontaneous generation be known".

The international team, comprising Spanish, US and Mexican scientists, has not only examined in detail the phrases, texts and paragraphs of the letters, but has also put into context all Darwin's opinions on the origins of life, available online and in the original manuscripts.

The origin of life hypothesis

A comment in a notebook dating back to 1837, in which Darwin explains that "the intimate relationship between the vital phenomena with chemistry and its laws makes the idea of spontaneous generation conceivable", gave the researchers their clue.

In another famous letter sent in 1871 to his friend, the English botanist and explorer Joseph D. Hooker, Charles Darwin imagines a small, warm pool where the inanimate matter would arrange itself into evolutionary matter, aided by chemical components and sufficient sources of energy.

In other letters, the naturalist admitted to colleagues such as Alfred Russel Wallace or Ernst Haeckel that spontaneous generation was important to the coherence of the theory. However, "at the same time, he acknowledged that science was not advanced enough to deal with the question (hence his reluctance to speak of it in public) and that he would not live to see it resolved", Peretó points out.


Pereto, Juli; Bada, Jeffrey L.; Lazcano, Antonio. "Charles Darwin and the Origin of Life" Origins of Life and Evolution of Biospheres 39(5): 395-406 octubre de 2009.

SINC | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>