Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chaperone enzyme provides new target for cancer treatments

19.01.2011
UNC scientists who study how cells repair damage from environmental factors like sunlight and cigarette smoke have discovered how a "chaperone" enzyme plays a key role in cells' ability to tolerate the DNA damage that leads to cancer and other diseases.

The enzyme, known as Rad18, detects a protein called DNA polymerase eta (Pol eta) and accompanies it to the sites of sunlight-induced DNA damage, enabling accurate repair. When Pol eta is not present, alternative error-prone polymerases take its place – a process that leads to DNA mutations often found in cancer cells.

In one known example, faulty DNA repair due to Pol eta- deficiency is responsible for the genetic disease xeroderma pigmentosum-variant, which makes patients extremely susceptible to skin cancers caused by exposure to sunlight. However, scientists did not know how the cells selected the correct DNA Polymerase for error-free repair of each type of DNA damage.

"We found that the mechanism that promotes the 'chaperone' enzyme to recruit Pol eta to sites of DNA damage is managed by another signaling protein termed 'Cdc7' which we know is essential to normal regulation of the cellular lifecycle," said lead author Cyrus Vaziri, PhD, who is an associate professor of pathology and laboratory medicine and member of UNC Lineberger Comprehensive Cancer Center. Thus cells employ Cdc7 to ensure accurate DNA repair during the stage of their lifecycle that is most vulnerable to cancer-causing mutations.

The study was published in November in the Journal of Cell Biology.

According to Vaziri, the dual role that Cdc7 plays in the cell lifecycle and DNA repair offers a promising target for potential cancer therapies.

"We know that cancer cells have high levels of Cdc7 activity and can evade some DNA-damaging therapies such as cis-Platinum through Rad18 and Pol eta activity. We may be able to target this pathway in platinum-resistant tumors to prevent DNA repair and enhance cancer cell killing by platinating agents," he said.

Other members of the research team include Komaraiah Palle, PhD from UNC's Department of Pathology and Laboratory Medicine, Tovah Day, PhD, Laura Barkley, PhD, and Ying Zou, PhD, from Boston University, Naoko Kakusho, PhD, and Hisao Masai, PhD, from the Genome Dynamics Project at the Tokyo Metropolitan Institute of Medical Science, Satoshi Tateishi, PhD, from Kumamoto University, Japan, and Alain Verreault, PhD, from the Universite de Montreal, Canada.

The research was funded by grants from the National Institute of Environmental Health Sciences, part of the National Institutes of Health.

Ellen de Graffenreid | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: DNA DNA damage DNA repair RNA Pol II Rad18 cancer cells chaperone health services

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>