Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Change in temperature uncovers genetic cross talk in plant immunity

16.11.2010
University of Missouri investigators' discovery sheds light on how plants fight off bacterial infections

Like us, plants rely on an immune system to fight off disease. Proteins that scout out malicious bacterial invaders in the cell and communicate their presence to the nucleus are important weapons in the plant's disease resistance strategy.

Researchers at the University of Missouri recently "tapped" into two proteins' communications with the nucleus and discovered a previously unknown level of cross talk. The discovery adds important new information about how plant proteins mediate resistance to bacteria that cause disease and may ultimately lead to novel strategies for boosting a plant's immune system.

Special proteins in the plant, called resistance proteins, can recognize highly specific features of proteins from pathogen, called effector proteins. When a pathogen is detected, a resistance protein triggers an "alarm" that communicates the danger to the cell's nucleus. The communication between the resistance protein and nucleus occurs through a mechanism called a signaling pathway.

"The signaling pathway is like a telephone wire that stretches between each resistance protein all the way to the nucleus," said Walter Gassmann, senior author of the study and associate professor of plant sciences in the Christopher S. Bond Life Sciences Center at the University. "Until now, evidence suggested that, among certain classes of resistance proteins, these wires don't cross -- one resistance protein can't hear what another one is saying."

But in a recent study, Gassmann and his MU colleagues -- post-doctoral researchers Sang Hee Kim and Saikat Bhattacharjee, graduate students Fei Gao and Ji Chul Nam, and former undergraduate student Joe Adiasor -- "tapped" into these lines and found evidence for cross talk between two different resistance proteins.

The discovery was made while studying another plant protein, SRFR1, which helps to moderate the immune response of the wild mustard plant Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. The researchers were interested in why removal of the SRFR1 gene resulted in a plant with an immune system that was always activated. They traced the effect back to expression of the resistance protein, SNC1.

"The connection between SRFR1 and SNC1 was somewhat surprising," said Gassmann. "We identified SRFR1 based on its effect on the plant immune response to the bacterial effector protein AvrRps4, which is usually detected by the resistance protein RPS4, not SNC1."

This class of plant resistance proteins has been thought to be highly specific detectors, meaning each member responds to a different effector protein.

"Based on our work, we think part of the answer is that both SNC1 and RPS4 physically associate with SRFR1. In other words, SRFR1 is where the SNC1 and RPS4 telephone wires get crossed."

The researchers tapped into this cross talk while studying temperature effects on resistance. They found that both proteins, SNC1 and RPS4, contribute to detection of AvrRps4 at 22 degrees Celsius, but only RPS4 does so at 24 degrees Celsius. Gassmann speculated that the temperature dependence may explain why this cross talk had not been previously observed.

"The discovery adds important new knowledge about the underlying mechanism of how plants fight off bacterial infection," said Gassmann, who is also a member of the University's Interdisciplinary Plant Group.

The new research was funded by the National Science Foundation and is reported in the November 4 issue of PLoS Pathogens.

Melody Kroll | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>