Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Change in temperature uncovers genetic cross talk in plant immunity

16.11.2010
University of Missouri investigators' discovery sheds light on how plants fight off bacterial infections

Like us, plants rely on an immune system to fight off disease. Proteins that scout out malicious bacterial invaders in the cell and communicate their presence to the nucleus are important weapons in the plant's disease resistance strategy.

Researchers at the University of Missouri recently "tapped" into two proteins' communications with the nucleus and discovered a previously unknown level of cross talk. The discovery adds important new information about how plant proteins mediate resistance to bacteria that cause disease and may ultimately lead to novel strategies for boosting a plant's immune system.

Special proteins in the plant, called resistance proteins, can recognize highly specific features of proteins from pathogen, called effector proteins. When a pathogen is detected, a resistance protein triggers an "alarm" that communicates the danger to the cell's nucleus. The communication between the resistance protein and nucleus occurs through a mechanism called a signaling pathway.

"The signaling pathway is like a telephone wire that stretches between each resistance protein all the way to the nucleus," said Walter Gassmann, senior author of the study and associate professor of plant sciences in the Christopher S. Bond Life Sciences Center at the University. "Until now, evidence suggested that, among certain classes of resistance proteins, these wires don't cross -- one resistance protein can't hear what another one is saying."

But in a recent study, Gassmann and his MU colleagues -- post-doctoral researchers Sang Hee Kim and Saikat Bhattacharjee, graduate students Fei Gao and Ji Chul Nam, and former undergraduate student Joe Adiasor -- "tapped" into these lines and found evidence for cross talk between two different resistance proteins.

The discovery was made while studying another plant protein, SRFR1, which helps to moderate the immune response of the wild mustard plant Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. The researchers were interested in why removal of the SRFR1 gene resulted in a plant with an immune system that was always activated. They traced the effect back to expression of the resistance protein, SNC1.

"The connection between SRFR1 and SNC1 was somewhat surprising," said Gassmann. "We identified SRFR1 based on its effect on the plant immune response to the bacterial effector protein AvrRps4, which is usually detected by the resistance protein RPS4, not SNC1."

This class of plant resistance proteins has been thought to be highly specific detectors, meaning each member responds to a different effector protein.

"Based on our work, we think part of the answer is that both SNC1 and RPS4 physically associate with SRFR1. In other words, SRFR1 is where the SNC1 and RPS4 telephone wires get crossed."

The researchers tapped into this cross talk while studying temperature effects on resistance. They found that both proteins, SNC1 and RPS4, contribute to detection of AvrRps4 at 22 degrees Celsius, but only RPS4 does so at 24 degrees Celsius. Gassmann speculated that the temperature dependence may explain why this cross talk had not been previously observed.

"The discovery adds important new knowledge about the underlying mechanism of how plants fight off bacterial infection," said Gassmann, who is also a member of the University's Interdisciplinary Plant Group.

The new research was funded by the National Science Foundation and is reported in the November 4 issue of PLoS Pathogens.

Melody Kroll | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>