Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chance discovery sheds new light on vision

21.07.2010
A chance discovery has led Australian scientists to question key assumptions about how our vision works.

Their results show the brain is more flexible and versatile than the computer it is often likened to, and even may lead to new tests for blinding diseases such as glaucoma.

Previously it was thought that the brain’s ability to discern colour depends on a specialised nerve ‘colour channel’, but now, say researchers from The Vision Centre and Sydney University, it appears some colour-sensing cells can also signal movement.

“In this research we discovered that blue sensing cells not only can respond to black and white patterns, but surprisingly are even sensitive to the direction of pattern movement,” explains team leader Professor Paul Martin.

“In diseases like glaucoma, your colour vision is impaired. Now we have discovered that the colour cells can also sense black and white and movement, that gives us a new way of testing to see if the cells are healthy or not. Our colleagues in The Vision Centre include experts at designing tests for glaucoma, and they now have a new clue that may make their tests even more sensitive,” he adds.

The serendipitous finding happened when young researcher Maziar Hashemi-Nezhad decided to carry out an unplanned experiment that came up with a totally unexpected result.

“It was chance. Maziar was in the lab, late at night, and decided to see if he could get colour vision cells to respond to a moving black and white pattern – something which was considered most unlikely because the prevailing scientific view was they respond only to colour. He saw an immediate response,” Prof Martin says.

“This is an example of how ‘blue sky’ science may lead to a practical outcome. The goal of this work is not to study glaucoma, it is really all about trying to interpret the signals on the ‘fax line’ that connects the eyes to the brain – this discovery takes us one small step closer to understanding what is really going down the fax line,” he explains.

“For a long time we’ve had an image of the brain as a kind of computer, with particular pathways – or ‘wires’- for particular nerve signals. Now it is becoming clear the wiring is a lot less precise than a computer. But imprecise wiring is actually flexible because it creates many backup pathways to compensate for aging and damage,” Prof. Martin says.

The researchers’ paper “Receptive field asymmetries produce color-dependent direction selectivity in primate lateral geniculate nucleus” by Chris Tailby, William Dobbie, Samuel Solomon, Brett Szmajda, Maziar Hashemi-Nezhad, Jason Forte and Paul Martin has just appeared in the Journal of Vision (2010), Volume 10 (8), pages 1-18.

The Vision Centre is funded by the Australian Research Council as the ARC Centre of Excellence in Vision Science.

More information:
Professor Paul Martin, The Vision Centre and The University of Sydney, ph +61 2 9382 7631 or 0423 011 061
Professor Trevor Lamb, The Vision Centre, ph +61 (0)2 61258929 or 0434022375
Julian Cribb, The Vision Centre media contact, 0418 639 245
http://www.vision.edu.au/

Professor Paul Martin | scinews.com.au
Further information:
http://www.vision.edu.au/

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>