Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chance discovery sheds new light on vision

21.07.2010
A chance discovery has led Australian scientists to question key assumptions about how our vision works.

Their results show the brain is more flexible and versatile than the computer it is often likened to, and even may lead to new tests for blinding diseases such as glaucoma.

Previously it was thought that the brain’s ability to discern colour depends on a specialised nerve ‘colour channel’, but now, say researchers from The Vision Centre and Sydney University, it appears some colour-sensing cells can also signal movement.

“In this research we discovered that blue sensing cells not only can respond to black and white patterns, but surprisingly are even sensitive to the direction of pattern movement,” explains team leader Professor Paul Martin.

“In diseases like glaucoma, your colour vision is impaired. Now we have discovered that the colour cells can also sense black and white and movement, that gives us a new way of testing to see if the cells are healthy or not. Our colleagues in The Vision Centre include experts at designing tests for glaucoma, and they now have a new clue that may make their tests even more sensitive,” he adds.

The serendipitous finding happened when young researcher Maziar Hashemi-Nezhad decided to carry out an unplanned experiment that came up with a totally unexpected result.

“It was chance. Maziar was in the lab, late at night, and decided to see if he could get colour vision cells to respond to a moving black and white pattern – something which was considered most unlikely because the prevailing scientific view was they respond only to colour. He saw an immediate response,” Prof Martin says.

“This is an example of how ‘blue sky’ science may lead to a practical outcome. The goal of this work is not to study glaucoma, it is really all about trying to interpret the signals on the ‘fax line’ that connects the eyes to the brain – this discovery takes us one small step closer to understanding what is really going down the fax line,” he explains.

“For a long time we’ve had an image of the brain as a kind of computer, with particular pathways – or ‘wires’- for particular nerve signals. Now it is becoming clear the wiring is a lot less precise than a computer. But imprecise wiring is actually flexible because it creates many backup pathways to compensate for aging and damage,” Prof. Martin says.

The researchers’ paper “Receptive field asymmetries produce color-dependent direction selectivity in primate lateral geniculate nucleus” by Chris Tailby, William Dobbie, Samuel Solomon, Brett Szmajda, Maziar Hashemi-Nezhad, Jason Forte and Paul Martin has just appeared in the Journal of Vision (2010), Volume 10 (8), pages 1-18.

The Vision Centre is funded by the Australian Research Council as the ARC Centre of Excellence in Vision Science.

More information:
Professor Paul Martin, The Vision Centre and The University of Sydney, ph +61 2 9382 7631 or 0423 011 061
Professor Trevor Lamb, The Vision Centre, ph +61 (0)2 61258929 or 0434022375
Julian Cribb, The Vision Centre media contact, 0418 639 245
http://www.vision.edu.au/

Professor Paul Martin | scinews.com.au
Further information:
http://www.vision.edu.au/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>