Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chains of nanogold – forged with atomic precision

23.09.2016

Researchers at Nanoscience Center of University of Jyväskylä in Finland have succeeded in producing short chains and rings of gold nanoparticles with unprecedented precision. They used a special kind of nanoparticles with a well-defined structure and linked them together with molecular bridges. These structures – being practically huge molecules – allow extremely accurate studies of light–matter interaction in metallic nanostructures and plasmonics. This research was funded by The Academy of Finland.

Nanotechnology gives us tools to fabricate nanometer sized particles where only a few hundred metal atoms form their core. New interesting properties emerge in this scale, for example, the light–matter interaction is extremely strong and catalytic activity increased. These properties have led to several applications, such as, chemical sensors and catalysts.


“Synthesis of nanoparticles usually yields a variety of sizes and shapes”, say lecturer Dr Tanja Lahtinen. The approach we use is exceptional in the sense that after purification we get only a single type of a nanoparticle. These nanoparticles have a specified number of each atom and the atoms are organized as a well-defined structure. It is essentially a single huge molecule with a core of gold. These nanoparticles were linked with molecular bridges forming pairs, chains, and rings of nanoparticles.

“When these kind of nanostructures interact with light, electron clouds of the neighboring metal cores become coupled”, explains researcher Dr Eero Hulkko. The coupling alters significantly the electric field what molecules in between the particles feel.

“Studying nanostructures that are well-defined at the atomic level allows us to combine experimental and computational methods in a seemless way”, continues Dr Lauri Lehtovaara, Research Fellow of the Finnish Academy. We are aiming to understand light–matter interaction in linked metallic nanostructures at the quantum level. Deeper understanding is essential for development of novel plasmonic applications.

The research continues a long-term multidispilinary collaboration at Nanoscience Center of University of Jyväskylä.

“I am very happy that our dedicated efforts on studying monolayer protected clusters and their applications have created an unique multidisiplinary center of excellence which is able to continuously publish high impact science”, says Hannu Häkkinen, an Academy Professor and head of the Nanoscience Center.

In addition to the above persons, Karolina Sokołowska, Dr Tiia-Riikka Tero, Ville Saarnio, Dr Johan Lindgren, and Prof Mika Pettersson contributed to the research. The research was published in the Nanoscale on xx.9.2016. Computational resources were supplied by CSC - IT Center for Science.

http://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr05267c#!divAbstract

  • Full bibliographic informationTanja Lahtinen, Eero Hulkko, Karolina Sokołowska, Tiia-Riikka Tero, Ville Saarnio, Johan Lindgren, Mika Pettersson, Hannu Häkkinen and Lauri Lehtovaar,a, “Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n” Nanoscale X x.x.2016, DOI: 10.1039/c6nr05267c

For further information, please contact:

Aila Pirinen+358295335092

aila.pirinen@aka.fi

Aila Pirinen | AlphaGalileo

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>