Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chains of nanogold – forged with atomic precision

23.09.2016

Researchers at Nanoscience Center of University of Jyväskylä in Finland have succeeded in producing short chains and rings of gold nanoparticles with unprecedented precision. They used a special kind of nanoparticles with a well-defined structure and linked them together with molecular bridges. These structures – being practically huge molecules – allow extremely accurate studies of light–matter interaction in metallic nanostructures and plasmonics. This research was funded by The Academy of Finland.

Nanotechnology gives us tools to fabricate nanometer sized particles where only a few hundred metal atoms form their core. New interesting properties emerge in this scale, for example, the light–matter interaction is extremely strong and catalytic activity increased. These properties have led to several applications, such as, chemical sensors and catalysts.


“Synthesis of nanoparticles usually yields a variety of sizes and shapes”, say lecturer Dr Tanja Lahtinen. The approach we use is exceptional in the sense that after purification we get only a single type of a nanoparticle. These nanoparticles have a specified number of each atom and the atoms are organized as a well-defined structure. It is essentially a single huge molecule with a core of gold. These nanoparticles were linked with molecular bridges forming pairs, chains, and rings of nanoparticles.

“When these kind of nanostructures interact with light, electron clouds of the neighboring metal cores become coupled”, explains researcher Dr Eero Hulkko. The coupling alters significantly the electric field what molecules in between the particles feel.

“Studying nanostructures that are well-defined at the atomic level allows us to combine experimental and computational methods in a seemless way”, continues Dr Lauri Lehtovaara, Research Fellow of the Finnish Academy. We are aiming to understand light–matter interaction in linked metallic nanostructures at the quantum level. Deeper understanding is essential for development of novel plasmonic applications.

The research continues a long-term multidispilinary collaboration at Nanoscience Center of University of Jyväskylä.

“I am very happy that our dedicated efforts on studying monolayer protected clusters and their applications have created an unique multidisiplinary center of excellence which is able to continuously publish high impact science”, says Hannu Häkkinen, an Academy Professor and head of the Nanoscience Center.

In addition to the above persons, Karolina Sokołowska, Dr Tiia-Riikka Tero, Ville Saarnio, Dr Johan Lindgren, and Prof Mika Pettersson contributed to the research. The research was published in the Nanoscale on xx.9.2016. Computational resources were supplied by CSC - IT Center for Science.

http://pubs.rsc.org/en/content/articlelanding/2016/nr/c6nr05267c#!divAbstract

  • Full bibliographic informationTanja Lahtinen, Eero Hulkko, Karolina Sokołowska, Tiia-Riikka Tero, Ville Saarnio, Johan Lindgren, Mika Pettersson, Hannu Häkkinen and Lauri Lehtovaar,a, “Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n” Nanoscale X x.x.2016, DOI: 10.1039/c6nr05267c

For further information, please contact:

Aila Pirinen+358295335092

aila.pirinen@aka.fi

Aila Pirinen | AlphaGalileo

More articles from Life Sciences:

nachricht The “Holy Grail” of peptide chemistry: Making peptide active agents available orally
21.02.2018 | Technische Universität München

nachricht First line of defence against influenza further decoded
21.02.2018 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

'Icebreaker' protein opens genome for t cell development, Penn researchers find

21.02.2018 | Health and Medicine

MEMS chips get metatlenses

21.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>