Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chains of Gold and Palladium

24.02.2014
Copolymerization of metal nanoparticles for the production of colloidal plasmonic copolymers

Molecules can copolymerize to form longer composite chains; it turns out that nanoparticles called colloidal particles can also copolymerize to make hybrid nanostructures. The fact that these reactions occur in a very similar manner is not obvious, but this could be used to carry out fundamental studies of copolymerization reactions. However, colloidal polymers are primarily useful for the development of highly complex nanosystems. In the journal Angewandte Chemie, a team of Chinese, Canadian, and American researchers has presented a report about the copolymerization of gold nanorods of various sizes as well as gold and palladium nanorods.


Polymers made of metal nanoparticles are particularly interesting because of their plasmons – quantized charge carrier density oscillations resulting from the collective excitation of free electrons to plasma oscillations. Long chains of metal nanoparticles known as plasmonic polymers display strong interactions between the plasmons of the individual building blocks.

Their optical properties can be controlled by means of factors like the degree of polymerization, the size of the nanoparticles, or the distance between particles. Copolymer chains made from nanoparticles with different sizes, shapes and compositions are even more interesting as they offer another degree of freedom in tuning the properties (and potentially, leading to new properties) of plasmonic polymers. Potential applications could include smaller computer chips, improved nanoantennas and sensors, and improved optical data processing.

The researchers from Jilin University (China), the University of Toronto (Canada), and the University of North Carolina (USA) have now developed methods for applying strategies from molecular copolymerization (the polymerization of different monomers together) to the co-assembly of nanorods of varying sizes and composition. Led by Kun Liu and Eugenia Kumacheva, the team uses gold nanorods with polystyrene chains on the ends as building blocks.

Addition of water to the organic solvent containing a suspension of the nanorods causes the polystyrene ends, which are only poorly soluble in water, to bond tightly together, connecting the nanorods into long polymer chains. This approach was extended to the co-assembly of random and block copolymers of gold nanorods of different length as well as random copolymers of gold and palladium nanorods. (Random copolymers contain different monomers in a random order; in a block copolymer the polymer chain contains larger domains of either one or the other monomer.)

The researchers were able to establish a model for the reactions that confirmed and extended established kinetic theories for molecular stepwise copolymerization reactions. The colloidal polymers obtained also provide an excellent model system for the fundamental investigation of plasmonic properties such as special modes resulting from the asymmetry of nanostructures with irregularly distributed components.

About the Author

Dr. Eugenia Kumacheva is a University Professor at the University of Toronto with a major appointment in the Department of Chemistry and cross-appointments in the Department of Chemical Engineering and the Institute of Biomaterials and Biomedical Engineering (IBBME). Her main specialty is the chemistry, physics, and materials science of soft matter, with the focus on polymers, nanoscience, and microfluidics. She is Fellow of the Royal Society of Canada, and recipient of a Humboldt Research Award and a Fellowship from the Killam Foundation. In 2009 she was awarded the L'Oreal-Unesco "Women in Science" Award given to five women in the world, one from each continent.

Author: Eugenia Kumacheva, University of Toronto (Canada), http://www.chem.utoronto.ca/staff/EK/index.htm

Title: Copolymerization of Metal Nanoparticles: A Route to Colloidal Plasmonic Copolymers

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309718

Dr. Eugenia Kumacheva | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Palladium chains of Gold polymerization

More articles from Life Sciences:

nachricht Novel 'repair system' discovered in algae may yield new tools for biotechnology
29.07.2016 | Boyce Thompson Institute

nachricht Molecular troublemakers instead of antibiotics?
29.07.2016 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>