Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Chains of Gold and Palladium

Copolymerization of metal nanoparticles for the production of colloidal plasmonic copolymers

Molecules can copolymerize to form longer composite chains; it turns out that nanoparticles called colloidal particles can also copolymerize to make hybrid nanostructures. The fact that these reactions occur in a very similar manner is not obvious, but this could be used to carry out fundamental studies of copolymerization reactions. However, colloidal polymers are primarily useful for the development of highly complex nanosystems. In the journal Angewandte Chemie, a team of Chinese, Canadian, and American researchers has presented a report about the copolymerization of gold nanorods of various sizes as well as gold and palladium nanorods.

Polymers made of metal nanoparticles are particularly interesting because of their plasmons – quantized charge carrier density oscillations resulting from the collective excitation of free electrons to plasma oscillations. Long chains of metal nanoparticles known as plasmonic polymers display strong interactions between the plasmons of the individual building blocks.

Their optical properties can be controlled by means of factors like the degree of polymerization, the size of the nanoparticles, or the distance between particles. Copolymer chains made from nanoparticles with different sizes, shapes and compositions are even more interesting as they offer another degree of freedom in tuning the properties (and potentially, leading to new properties) of plasmonic polymers. Potential applications could include smaller computer chips, improved nanoantennas and sensors, and improved optical data processing.

The researchers from Jilin University (China), the University of Toronto (Canada), and the University of North Carolina (USA) have now developed methods for applying strategies from molecular copolymerization (the polymerization of different monomers together) to the co-assembly of nanorods of varying sizes and composition. Led by Kun Liu and Eugenia Kumacheva, the team uses gold nanorods with polystyrene chains on the ends as building blocks.

Addition of water to the organic solvent containing a suspension of the nanorods causes the polystyrene ends, which are only poorly soluble in water, to bond tightly together, connecting the nanorods into long polymer chains. This approach was extended to the co-assembly of random and block copolymers of gold nanorods of different length as well as random copolymers of gold and palladium nanorods. (Random copolymers contain different monomers in a random order; in a block copolymer the polymer chain contains larger domains of either one or the other monomer.)

The researchers were able to establish a model for the reactions that confirmed and extended established kinetic theories for molecular stepwise copolymerization reactions. The colloidal polymers obtained also provide an excellent model system for the fundamental investigation of plasmonic properties such as special modes resulting from the asymmetry of nanostructures with irregularly distributed components.

About the Author

Dr. Eugenia Kumacheva is a University Professor at the University of Toronto with a major appointment in the Department of Chemistry and cross-appointments in the Department of Chemical Engineering and the Institute of Biomaterials and Biomedical Engineering (IBBME). Her main specialty is the chemistry, physics, and materials science of soft matter, with the focus on polymers, nanoscience, and microfluidics. She is Fellow of the Royal Society of Canada, and recipient of a Humboldt Research Award and a Fellowship from the Killam Foundation. In 2009 she was awarded the L'Oreal-Unesco "Women in Science" Award given to five women in the world, one from each continent.

Author: Eugenia Kumacheva, University of Toronto (Canada),

Title: Copolymerization of Metal Nanoparticles: A Route to Colloidal Plasmonic Copolymers

Angewandte Chemie International Edition, Permalink to the article:

Dr. Eugenia Kumacheva | Angewandte Chemie
Further information:

Further reports about: Palladium chains of Gold polymerization

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>