Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cerebrospinal fluid signals control the behavior of stem cells in the brain

22.07.2016

Prof. Fiona Doetsch’s research team at the Biozentrum, University of Basel, has discovered that the choroid plexus, a largely ignored structure in the brain that produces the cerebrospinal fluid, is an important regulator of adult neural stem cells. The study recently published in “Cell Stem Cell” also shows that signals secreted by the choroid plexus dynamically change during aging which affects aged stem cell behavior.

Stem cells are non-specialized cells found in different organs. They have the capacity to generate specialized cells in the body. In the adult brain, neural stem cells give rise to neurons throughout life. The stem cells reside in unique micro-environments, so-called niches which provide key signals that regulate stem cell self-renewal and differentiation.


When stem cells from the old brain are cultured with signals of a young choroid plexus they can divide and form new neurons (red).

Biozentrum, University of Basel

Stem cells in the adult brain contact the ventricles, cavities filled with cerebrospinal fluid (CSF) that bathes and protects the brain. The CSF is produced by the choroid plexus. The research team led by Prof. Fiona Doetsch at the Biozentrum of the University of Basel has now shown that the choroid plexus is a key component of the stem cell niche, whose properties change throughout life and affect stem cell behavior.

Choroid plexus signals regulate stem cells

Fiona Doetsch’s group uncovered that the choroid plexus secretes a wide variety of important signaling factors in the CSF, which are important for stem cell regulation throughout life. During aging, the levels of stem cell division and formation of new neurons decrease.

The research team showed that although stem cells are still present in the aged brain, and have the capacity to divide, they do so less. “One reason is that signals in the old choroid plexus are different. As a consequence stem cells receive different messages and are less capable to form new neurons during aging. In other words, compromising the fitness of stem cells in this brain region”, explains Violeta Silva Vargas, the first author of the study.

“But what is really amazing is that when you cultivate old stem cells with signals from young fluid, they can still be stimulated to divide – behaving like the young stem cells”.

A new path to understand brain function in health and disease

In the future, the research team plans to investigate the composition of the signaling factors secreted by the choroid plexus, as well as how these change in different states and affect neural stem cells. This could provide new paths for altering brain function in health and disease. “We can imagine the choroid plexus as a watering can that provides signals to the stem cells. Our investigations also open a new route for understanding how different physiological states of the body influence stem cells in the brain during health and disease, and opens new ways for thinking about therapy”, says Fiona Doetsch.

Original article:
Violeta Silva-Vargas, Angel R. Maldonado-Soto, Dogukan Mizrak, Paolo Codega, Fiona Doetsch: Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells. Cell Stem Cell, published online 21 July 2016.

Further Information:
Heike Sacher, University of Basel, Biozentrum, Communications, Tel. +41 61 267 14 49, email: heike.sacher@unibas.ch

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>