Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cerebrospinal fluid signals control the behavior of stem cells in the brain


Prof. Fiona Doetsch’s research team at the Biozentrum, University of Basel, has discovered that the choroid plexus, a largely ignored structure in the brain that produces the cerebrospinal fluid, is an important regulator of adult neural stem cells. The study recently published in “Cell Stem Cell” also shows that signals secreted by the choroid plexus dynamically change during aging which affects aged stem cell behavior.

Stem cells are non-specialized cells found in different organs. They have the capacity to generate specialized cells in the body. In the adult brain, neural stem cells give rise to neurons throughout life. The stem cells reside in unique micro-environments, so-called niches which provide key signals that regulate stem cell self-renewal and differentiation.

When stem cells from the old brain are cultured with signals of a young choroid plexus they can divide and form new neurons (red).

Biozentrum, University of Basel

Stem cells in the adult brain contact the ventricles, cavities filled with cerebrospinal fluid (CSF) that bathes and protects the brain. The CSF is produced by the choroid plexus. The research team led by Prof. Fiona Doetsch at the Biozentrum of the University of Basel has now shown that the choroid plexus is a key component of the stem cell niche, whose properties change throughout life and affect stem cell behavior.

Choroid plexus signals regulate stem cells

Fiona Doetsch’s group uncovered that the choroid plexus secretes a wide variety of important signaling factors in the CSF, which are important for stem cell regulation throughout life. During aging, the levels of stem cell division and formation of new neurons decrease.

The research team showed that although stem cells are still present in the aged brain, and have the capacity to divide, they do so less. “One reason is that signals in the old choroid plexus are different. As a consequence stem cells receive different messages and are less capable to form new neurons during aging. In other words, compromising the fitness of stem cells in this brain region”, explains Violeta Silva Vargas, the first author of the study.

“But what is really amazing is that when you cultivate old stem cells with signals from young fluid, they can still be stimulated to divide – behaving like the young stem cells”.

A new path to understand brain function in health and disease

In the future, the research team plans to investigate the composition of the signaling factors secreted by the choroid plexus, as well as how these change in different states and affect neural stem cells. This could provide new paths for altering brain function in health and disease. “We can imagine the choroid plexus as a watering can that provides signals to the stem cells. Our investigations also open a new route for understanding how different physiological states of the body influence stem cells in the brain during health and disease, and opens new ways for thinking about therapy”, says Fiona Doetsch.

Original article:
Violeta Silva-Vargas, Angel R. Maldonado-Soto, Dogukan Mizrak, Paolo Codega, Fiona Doetsch: Age-Dependent Niche Signals from the Choroid Plexus Regulate Adult Neural Stem Cells. Cell Stem Cell, published online 21 July 2016.

Further Information:
Heike Sacher, University of Basel, Biozentrum, Communications, Tel. +41 61 267 14 49, email:

Heike Sacher | Universität Basel
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>