Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cerebellum as navigation assistant: A cognitive map enables orientation

03.11.2011
The cerebellum as navigation assistant
A cognitive map enables orientation

The cerebellum is far more intensively involved in helping us navigate than previously thought. To move and learn effectively in spatial environments our brain, and particularly our hippocampus, creates a "cognitive" map of the environment. The cerebellum contributes to the creation of this map through altering the chemical communication between its neurones.

If this ability is inactivated, the brain is no longer able to to create an effective spatial representation and thus navigation in an environment becomes impaired. The details of these observations were recently published in "Science" by the Ruhr University neuroscientist, Marion André who is a student of the International Graduate School of Neuroscience( IGSN), along with her colleagues in France.

A cognitive map in the hippocampus

In order to navigate efficiently in an environment, we need to create and maintain a reliable internal representation of the external world. A key region enabling such representation is the hippocampus which contains specialized pyramidal neurons named place cells. Each place cell is activated at specific location of the environment and gives dynamic information about self-location relative to the external world. These neurons thus generate a cognitive map in the hippocampal system through the integration of multi sensory inputs combining external information (such as visual, auditory, olfactory and tactile cues) and inputs generated by self-motion (i.e. optic flow, proprioceptive and vestibular information).

Decisive: synaptic plasticity

Our ability to navigate also relies on the potential to use this cognitive map to form an optimal trajectory toward a goal. The cerebellum, a foliate region based at the back of the brain, has been recently shown to participate in the formation of the optimal trajectory. This structure contains neurons that are able to increase or decrease their chemical communication, a mechanism called synaptic plasticity. A decrease in the synaptic transmission of the cerebellar neurons, named long-term depression (LTD) participates in the optimization of the path toward a goal.

No orientation without LTD

Using transgenic mice that had a mutation impairing exclusively LTD of the cerebellar neurons, the neuroscientists were able to show that the cerebellum participates also in the formation of the hippocampal cognitive map. Indeed mice lacking this form of cerebellar plasticity were unable to build a reliable cognitive representation of the environment when they had to use self-motion information. Consequently, they were unable to navigate efficiently towards a goal in the absence of external information (for instance in the dark). This work highlights for the first time an unsuspected function of the cerebellum in shaping the representation of our body in space.

Bibliographic record

Christelle Rochefort, Arnaud Arabo, Marion André, Bruno Poucet, Etienne Save, and Laure Rondi-Reig: Cerebellum Shapes Hippocampal Spatial Code. Science, 21 October 2011: 385-389. DOI:10.1126/science.1207403

Internet: http://www.sciencemag.org/content/334/6054/385.full?sid=4b397dcb-4e01-4fbb-9168-...

Further Information

Dr. Marion André, Abteilung für Neurophysiologie, Medizinsche Fakultät der RUB und International Graduate School of Neuroscience (IGSN) der RUB, Tel. +49 234 32 22042

Prof. Dr. Denise Manahan-Vaughan, Leiterin des Lehrstuhls für Neurophysiologie und Direktorin/Studiendekanin der IGSN, Tel. +49 234 32 22042, denise.manahan-vaughan@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/igsn/index.shtml

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>