Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The cerebellum as navigation assistant: A cognitive map enables orientation

03.11.2011
The cerebellum as navigation assistant
A cognitive map enables orientation

The cerebellum is far more intensively involved in helping us navigate than previously thought. To move and learn effectively in spatial environments our brain, and particularly our hippocampus, creates a "cognitive" map of the environment. The cerebellum contributes to the creation of this map through altering the chemical communication between its neurones.

If this ability is inactivated, the brain is no longer able to to create an effective spatial representation and thus navigation in an environment becomes impaired. The details of these observations were recently published in "Science" by the Ruhr University neuroscientist, Marion André who is a student of the International Graduate School of Neuroscience( IGSN), along with her colleagues in France.

A cognitive map in the hippocampus

In order to navigate efficiently in an environment, we need to create and maintain a reliable internal representation of the external world. A key region enabling such representation is the hippocampus which contains specialized pyramidal neurons named place cells. Each place cell is activated at specific location of the environment and gives dynamic information about self-location relative to the external world. These neurons thus generate a cognitive map in the hippocampal system through the integration of multi sensory inputs combining external information (such as visual, auditory, olfactory and tactile cues) and inputs generated by self-motion (i.e. optic flow, proprioceptive and vestibular information).

Decisive: synaptic plasticity

Our ability to navigate also relies on the potential to use this cognitive map to form an optimal trajectory toward a goal. The cerebellum, a foliate region based at the back of the brain, has been recently shown to participate in the formation of the optimal trajectory. This structure contains neurons that are able to increase or decrease their chemical communication, a mechanism called synaptic plasticity. A decrease in the synaptic transmission of the cerebellar neurons, named long-term depression (LTD) participates in the optimization of the path toward a goal.

No orientation without LTD

Using transgenic mice that had a mutation impairing exclusively LTD of the cerebellar neurons, the neuroscientists were able to show that the cerebellum participates also in the formation of the hippocampal cognitive map. Indeed mice lacking this form of cerebellar plasticity were unable to build a reliable cognitive representation of the environment when they had to use self-motion information. Consequently, they were unable to navigate efficiently towards a goal in the absence of external information (for instance in the dark). This work highlights for the first time an unsuspected function of the cerebellum in shaping the representation of our body in space.

Bibliographic record

Christelle Rochefort, Arnaud Arabo, Marion André, Bruno Poucet, Etienne Save, and Laure Rondi-Reig: Cerebellum Shapes Hippocampal Spatial Code. Science, 21 October 2011: 385-389. DOI:10.1126/science.1207403

Internet: http://www.sciencemag.org/content/334/6054/385.full?sid=4b397dcb-4e01-4fbb-9168-...

Further Information

Dr. Marion André, Abteilung für Neurophysiologie, Medizinsche Fakultät der RUB und International Graduate School of Neuroscience (IGSN) der RUB, Tel. +49 234 32 22042

Prof. Dr. Denise Manahan-Vaughan, Leiterin des Lehrstuhls für Neurophysiologie und Direktorin/Studiendekanin der IGSN, Tel. +49 234 32 22042, denise.manahan-vaughan@rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/igsn/index.shtml

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>