Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cement’s basic molecular structure finally decoded

14.09.2009
In the 2,000 or so years since the Roman Empire employed a naturally occurring form of cement to build a vast system of concrete aqueducts and other large edifices, researchers have analyzed the molecular structure of natural materials and created entirely new building materials such as steel, which has a well-documented crystalline structure at the atomic scale.

Oddly enough, the three-dimensional crystalline structure of cement hydrate - the paste that forms and quickly hardens when cement powder is mixed with water - has eluded scientific attempts at decoding, despite the fact that concrete is the most prevalent man-made material on earth and the focus of a multibillion-dollar industry that is under pressure to clean up its act.

The manufacture of cement is responsible for about 5 percent of all carbon dioxide emissions worldwide, and new emission standards proposed by the U.S. Environmental Protection Agency could push the cement industry to the developing world.

"Cement is so widely used as a building material that nobody is going to replace it anytime soon. But it has a carbon dioxide problem, so a basic understanding of this material could be very timely," said MIT Professor Sidney Yip, co-author of a paper published online in the Proceedings of the National Academy of Sciences (PNAS) during the week of Sept. 7 that announces the decoding of the three-dimensional structure of the basic unit of cement hydrate by a group of MIT researchers who have adopted the team name of Liquid Stone.

"We believe this work is a first step toward a consistent model of the molecular structure of cement hydrate, and we hope the scientific community will work with it," said Yip, who is in MIT's Department of Nuclear Science and Engineering (NSE). "In every field there are breakthroughs that help the research frontier moving forward. One example is Watson and Crick's discovery of the basic structure of DNA. That structural model put biology on very sound footing."

Scientists have long believed that at the atomic level, cement hydrate (or calcium-silica-hydrate) closely resembles the rare mineral tobermorite, which has an ordered geometry consisting of layers of infinitely long chains of three-armed silica molecules (called silica tetrahedra) interspersed with neat layers of calcium oxide.

But the MIT team found that the calcium-silica-hydrate in cement isn't really a crystal. It's a hybrid that shares some characteristics with crystalline structures and some with the amorphous structure of frozen liquids, such as glass or ice.

At the atomic scale, tobermorite and other minerals resemble the regular, layered geometric patterns of kilim rugs, with horizontal layers of triangles interspersed with layers of colored stripes. But a two-dimensional look at a unit of cement hydrate would show layers of triangles (the silica tetrahedra) with every third, sixth or ninth triangle turned up or down along the horizontal axis, reaching into the layer of calcium oxide above or below.

And it is in these messy areas - where breaks in the silica tetrahedra create small voids in the corresponding layers of calcium oxide - that water molecules attach, giving cement its robust quality. Those erstwhile "flaws" in the otherwise regular geometric structure provide some give to the building material at the atomic scale that transfers up to the macro scale. When under stress, the cement hydrate has the flexibility to stretch or compress just a little, rather than snapping.

"We've known for several years that at the nano scale, cement hydrates pack together tightly like oranges in a grocer's pyramid. Now, we've finally been able to look inside the orange to find its fundamental signature. I call it the DNA of concrete," said Franz-Josef Ulm, the Macomber Professor in the Department of Civil and Environmental Engineering (CEE), a co-author of the paper. "Whereas water weakens a material like tobermorite or jennite, it strengthens the cement hydrate. The 'disorder' or complexity of its chemistry creates a heterogenic, robust structure.

"Now that we have a validated molecular model, we can manipulate the chemical structure to design concrete for strength and environmental qualities, such as the ability to withstand higher pressure or temperature," said Ulm.

CEE Visiting Professor Roland Pellenq, director of research at the Interdisciplinary Center of Nanosciences at Marseille, which is part of the French National Center of Scientific Research and Marseille University, pinned down the exact chemical shape and structure of C-S-H using atomistic modeling on 260 co-processors and a statistical method called the grand canonical Monte Carlo simulation.

Like its name, the simulation requires a bit of gambling to find the answer. Pellenq first removed all water molecules from the basic unit of tobermorite, watched the geometry collapse, then returned the water molecules singly, then doubly and so on, removing them each time to allow the geometry to reshape as it would naturally. After he added the 104th water molecule, the correct atomic weight of C-S-H was reached, and Pellenq knew he had an accurate model for the geometric structure of the basic unit of cement hydrate.

The team then used that atomistic model to perform six tests that validated its accuracy.

"This gives us a starting point for experiments to improve the mechanical properties and durability of concrete. For instance, we can now start replacing silica in our model with other materials," said Pellenq.

Other team members are graduate student Rouzbeh Shahsavari of CEE and Markus Buehler, MIT's Esther and Harold E. Edgerton Career Development Associate Professor of Civil and Environmental Engineering; Krystyn Van Vliet, MIT's Thomas Lord Associate Professor of Materials Science and Engineering; and NSE postdoctoral associate Akihiro Kushima.

This research was funded by the Portuguese cement manufacturer, Cimpor Corp., enabled through the MIT-Portugal Program.

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>