Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cement’s basic molecular structure finally decoded

14.09.2009
In the 2,000 or so years since the Roman Empire employed a naturally occurring form of cement to build a vast system of concrete aqueducts and other large edifices, researchers have analyzed the molecular structure of natural materials and created entirely new building materials such as steel, which has a well-documented crystalline structure at the atomic scale.

Oddly enough, the three-dimensional crystalline structure of cement hydrate - the paste that forms and quickly hardens when cement powder is mixed with water - has eluded scientific attempts at decoding, despite the fact that concrete is the most prevalent man-made material on earth and the focus of a multibillion-dollar industry that is under pressure to clean up its act.

The manufacture of cement is responsible for about 5 percent of all carbon dioxide emissions worldwide, and new emission standards proposed by the U.S. Environmental Protection Agency could push the cement industry to the developing world.

"Cement is so widely used as a building material that nobody is going to replace it anytime soon. But it has a carbon dioxide problem, so a basic understanding of this material could be very timely," said MIT Professor Sidney Yip, co-author of a paper published online in the Proceedings of the National Academy of Sciences (PNAS) during the week of Sept. 7 that announces the decoding of the three-dimensional structure of the basic unit of cement hydrate by a group of MIT researchers who have adopted the team name of Liquid Stone.

"We believe this work is a first step toward a consistent model of the molecular structure of cement hydrate, and we hope the scientific community will work with it," said Yip, who is in MIT's Department of Nuclear Science and Engineering (NSE). "In every field there are breakthroughs that help the research frontier moving forward. One example is Watson and Crick's discovery of the basic structure of DNA. That structural model put biology on very sound footing."

Scientists have long believed that at the atomic level, cement hydrate (or calcium-silica-hydrate) closely resembles the rare mineral tobermorite, which has an ordered geometry consisting of layers of infinitely long chains of three-armed silica molecules (called silica tetrahedra) interspersed with neat layers of calcium oxide.

But the MIT team found that the calcium-silica-hydrate in cement isn't really a crystal. It's a hybrid that shares some characteristics with crystalline structures and some with the amorphous structure of frozen liquids, such as glass or ice.

At the atomic scale, tobermorite and other minerals resemble the regular, layered geometric patterns of kilim rugs, with horizontal layers of triangles interspersed with layers of colored stripes. But a two-dimensional look at a unit of cement hydrate would show layers of triangles (the silica tetrahedra) with every third, sixth or ninth triangle turned up or down along the horizontal axis, reaching into the layer of calcium oxide above or below.

And it is in these messy areas - where breaks in the silica tetrahedra create small voids in the corresponding layers of calcium oxide - that water molecules attach, giving cement its robust quality. Those erstwhile "flaws" in the otherwise regular geometric structure provide some give to the building material at the atomic scale that transfers up to the macro scale. When under stress, the cement hydrate has the flexibility to stretch or compress just a little, rather than snapping.

"We've known for several years that at the nano scale, cement hydrates pack together tightly like oranges in a grocer's pyramid. Now, we've finally been able to look inside the orange to find its fundamental signature. I call it the DNA of concrete," said Franz-Josef Ulm, the Macomber Professor in the Department of Civil and Environmental Engineering (CEE), a co-author of the paper. "Whereas water weakens a material like tobermorite or jennite, it strengthens the cement hydrate. The 'disorder' or complexity of its chemistry creates a heterogenic, robust structure.

"Now that we have a validated molecular model, we can manipulate the chemical structure to design concrete for strength and environmental qualities, such as the ability to withstand higher pressure or temperature," said Ulm.

CEE Visiting Professor Roland Pellenq, director of research at the Interdisciplinary Center of Nanosciences at Marseille, which is part of the French National Center of Scientific Research and Marseille University, pinned down the exact chemical shape and structure of C-S-H using atomistic modeling on 260 co-processors and a statistical method called the grand canonical Monte Carlo simulation.

Like its name, the simulation requires a bit of gambling to find the answer. Pellenq first removed all water molecules from the basic unit of tobermorite, watched the geometry collapse, then returned the water molecules singly, then doubly and so on, removing them each time to allow the geometry to reshape as it would naturally. After he added the 104th water molecule, the correct atomic weight of C-S-H was reached, and Pellenq knew he had an accurate model for the geometric structure of the basic unit of cement hydrate.

The team then used that atomistic model to perform six tests that validated its accuracy.

"This gives us a starting point for experiments to improve the mechanical properties and durability of concrete. For instance, we can now start replacing silica in our model with other materials," said Pellenq.

Other team members are graduate student Rouzbeh Shahsavari of CEE and Markus Buehler, MIT's Esther and Harold E. Edgerton Career Development Associate Professor of Civil and Environmental Engineering; Krystyn Van Vliet, MIT's Thomas Lord Associate Professor of Materials Science and Engineering; and NSE postdoctoral associate Akihiro Kushima.

This research was funded by the Portuguese cement manufacturer, Cimpor Corp., enabled through the MIT-Portugal Program.

Denise Brehm | EurekAlert!
Further information:
http://www.mit.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>