Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cement, the glue that holds oyster families together

26.08.2010
Chemists discover how oysters bond together to form massive reef complexes

Oyster reefs are on the decline, with over-harvesting and pollution reducing some stocks as much as 98 percent over the last two centuries.

With a growing awareness of oysters' critical roles filtering water, preventing erosion, guarding coasts from storm damage, and providing habitat for other organisms, researchers have been investigating how oyster reefs form in order to better understand the organisms and offer potential guidance to oyster re-introduction projects.

At the same time, researchers have been studying marine animals' various adhesives, uncovering fundamental properties that could yield new innovations from replacements for medical sutures to surface coatings that keep waterborne craft from picking up marine hitchhikers.

Now, researchers from Purdue University and the University of South Carolina have shown that oysters produce a unique adhesive material for affixing themselves to each other, a cement that differs from the glues used by other marine organisms.

The researchers are presenting their findings at the 2010 Annual Meeting of the American Chemical Society in Boston, Mass., on Aug. 24, and will publish their results in the Sept. 15, 2010, issue of the Journal of the American Chemical Society. (The article is available online now.)

"We wanted to learn how oysters attach themselves to surfaces, and each other, when building reef structures," said Purdue University chemist Jonathan Wilker, one of the lead researchers on the study. "Such knowledge can help us develop biomedical materials including wet setting surgical adhesives. These insights may also help us prevent marine bioadhesion for keeping ship hulls clean, thereby reducing drag, fuel consumption, and carbon emissions."

Wilker and his colleagues studied the common Eastern oyster, Crassostrea virginica, which the researchers collected from the Baruch Marine Field Laboratory on the South Carolina coast.

By comparing the oyster shells (inside and out) with the material connecting oyster to oyster, the researchers were able to determine the chemical composition of the cementing material.

"Our results indicate that there is a chemically distinct adhesive material holding the oysters together," said Wilker. "The cement contains significantly more protein than the shell. We also observed both iron and highly oxidized, cross-linked proteins, which may play a role in curing the material."

Cross-linked proteins are an emerging theme in the study of marine biological materials, central to the glues of mussels, barnacles, and now, oysters. However, the oysters use far less protein in their adhesive when compared to the analogous materials from mussels and barnacles.

Beyond this relatively minor protein component, the oyster adhesive appears to be unique, composed largely of chalky calcium carbonate. Oysters seem to prefer an adhesive that is more like a hard, inorganic cement versus the softer, organic glues of other organisms.

This research was supported by the National Science Foundation through the Chemistry of Life Processes program under grant CHE-0952928 and the Office of Naval Research through their Biofouling Control Coatings research program.

"This is exactly the kind of interdisciplinary, cutting-edge research that we strive to support, particularly by looking at research that lies outside the traditional sub-disciplines in the field," said Dan Rabinovich, the program officer in the NSF Division of Chemistry who supports Wilker's grant. "This is in agreement with the Division's realigned programs, which no longer bear the traditional 'organic', 'inorganic', 'physical' or 'analytical' descriptors in their names."

The researchers next hope to determine the interplay between the cement's organic and inorganic components. Then, the chemists will use what they learn to create new classes of synthetic materials as well as adhesion-preventing surfaces.

"By understanding how various marine organisms attach themselves to surfaces, it may be possible to rationally design coatings to inhibit this process without the use of toxic components," said Linda Chrisey, a program officer in the Naval Biosciences and Biocentric Technology program who helps fund the research. "This is one of the goals of the Office of Naval Research's Biofouling-Control Coatings research program."

Josh Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>