Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cement, the glue that holds oyster families together

Chemists discover how oysters bond together to form massive reef complexes

Oyster reefs are on the decline, with over-harvesting and pollution reducing some stocks as much as 98 percent over the last two centuries.

With a growing awareness of oysters' critical roles filtering water, preventing erosion, guarding coasts from storm damage, and providing habitat for other organisms, researchers have been investigating how oyster reefs form in order to better understand the organisms and offer potential guidance to oyster re-introduction projects.

At the same time, researchers have been studying marine animals' various adhesives, uncovering fundamental properties that could yield new innovations from replacements for medical sutures to surface coatings that keep waterborne craft from picking up marine hitchhikers.

Now, researchers from Purdue University and the University of South Carolina have shown that oysters produce a unique adhesive material for affixing themselves to each other, a cement that differs from the glues used by other marine organisms.

The researchers are presenting their findings at the 2010 Annual Meeting of the American Chemical Society in Boston, Mass., on Aug. 24, and will publish their results in the Sept. 15, 2010, issue of the Journal of the American Chemical Society. (The article is available online now.)

"We wanted to learn how oysters attach themselves to surfaces, and each other, when building reef structures," said Purdue University chemist Jonathan Wilker, one of the lead researchers on the study. "Such knowledge can help us develop biomedical materials including wet setting surgical adhesives. These insights may also help us prevent marine bioadhesion for keeping ship hulls clean, thereby reducing drag, fuel consumption, and carbon emissions."

Wilker and his colleagues studied the common Eastern oyster, Crassostrea virginica, which the researchers collected from the Baruch Marine Field Laboratory on the South Carolina coast.

By comparing the oyster shells (inside and out) with the material connecting oyster to oyster, the researchers were able to determine the chemical composition of the cementing material.

"Our results indicate that there is a chemically distinct adhesive material holding the oysters together," said Wilker. "The cement contains significantly more protein than the shell. We also observed both iron and highly oxidized, cross-linked proteins, which may play a role in curing the material."

Cross-linked proteins are an emerging theme in the study of marine biological materials, central to the glues of mussels, barnacles, and now, oysters. However, the oysters use far less protein in their adhesive when compared to the analogous materials from mussels and barnacles.

Beyond this relatively minor protein component, the oyster adhesive appears to be unique, composed largely of chalky calcium carbonate. Oysters seem to prefer an adhesive that is more like a hard, inorganic cement versus the softer, organic glues of other organisms.

This research was supported by the National Science Foundation through the Chemistry of Life Processes program under grant CHE-0952928 and the Office of Naval Research through their Biofouling Control Coatings research program.

"This is exactly the kind of interdisciplinary, cutting-edge research that we strive to support, particularly by looking at research that lies outside the traditional sub-disciplines in the field," said Dan Rabinovich, the program officer in the NSF Division of Chemistry who supports Wilker's grant. "This is in agreement with the Division's realigned programs, which no longer bear the traditional 'organic', 'inorganic', 'physical' or 'analytical' descriptors in their names."

The researchers next hope to determine the interplay between the cement's organic and inorganic components. Then, the chemists will use what they learn to create new classes of synthetic materials as well as adhesion-preventing surfaces.

"By understanding how various marine organisms attach themselves to surfaces, it may be possible to rationally design coatings to inhibit this process without the use of toxic components," said Linda Chrisey, a program officer in the Naval Biosciences and Biocentric Technology program who helps fund the research. "This is one of the goals of the Office of Naval Research's Biofouling-Control Coatings research program."

Josh Chamot | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>