Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less is more: Novel cellulose structure requires fewer enzymes to process biomass to fuel

20.06.2013
Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production.
Improved methods for breaking down cellulose nanofibers are central to cost-effective biofuel production and the subject of new research from Los Alamos National Laboratory (LANL) and the Great Lakes Bioenergy Research Center (GLBRC). Scientists are investigating the unique properties of crystalline cellulose nanofibers to develop novel chemical pretreatments and designer enzymes for biofuel production from cellulosic—or non-food—plant derived biomass.

“Cellulose is laid out in plant cell walls as crystalline nanofibers, like steel reinforcements embedded in concrete columns,” says GLBRC’s Shishir Chundawat. “The key to cheaper biofuel production is to unravel these tightly packed nanofibers more efficiently into soluble sugars using fewer enzymes.”

An article published this week in the Proceedings of the National Academy of Sciences suggests—counter-intuitively—that increased binding of enzymes to cellulose polymers doesn’t always lead to faster breakdown into simple sugars. In fact, Chundawat’s research team found that using novel biomass pretreatments to convert cellulose to a unique crystalline structure called cellulose III reduced native enzyme binding while increasing sugar yields by as much as five times.

“The ability of this unconventional pretreatment strategy, currently under development at GLBRC, to selectively alter the cellulose crystal structure may lead to an order of magnitude reduction in enzyme usage. This will be critical for cost-effective cellulosic biofuel production,” says Bruce Dale of Michigan State University, who leads GLBRC’s biomass deconstruction research area.

The researchers had previously demonstrated that altering the crystal structure of native cellulose to cellulose III accelerates enzymatic deconstruction; however, the recent observation that cellulose III increased sugar yields with reduced levels of bound enzyme was unexpected. To explain this finding, Chundawat and a team of LANL researchers led by Gnana Gnanakaran and Anurag Sethi developed a mechanistic kinetic model indicating that the relationship between enzyme affinity for cellulose and catalytic efficiency is more complex than previously thought.

Cellulose III was found to have a less sticky surface that makes it harder for native enzymes to get stuck non-productively on it, unlike untreated cellulose surfaces. The model further predicts that the enhanced enzyme activity, despite reduced binding, is due to the relative ease with which enzymes are able to pull out individual cellulose III chains from the pretreated nanofiber surface and then break them apart into simple sugars.

“These findings are exciting because they may catalyze future development of novel engineered enzymes that are further tailored for conversion of cellulose III rich pretreated biomass to cheaper fuels and other useful compounds that are currently derived from non-renewable fossil fuels,” says Gnanakaran.

Online link to paper: “Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis” PNAS 2013; published ahead of print June 19, 2013, doi:10.1073/pnas.1213426110.

This research was funded by the Great Lakes Bioenergy Research Center (supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through Cooperative Agreement DE-FC02-07ER64494 between the Board of Regents of the University of Wisconsin System and the U.S. Department of Energy). The LANL team was supported by the National Advanced Biofuels Consortium (NABC), the Center for Non-Linear Studies, and the Laboratory Directed Research & Development (LDRD) program at LANL.

About Great Lakes Bioenergy Research Center

The Great Lakes Bioenergy Research Center (GLBRC) is one of three Department of Energy funded Bioenergy Research Centers that were founded by DOE’s Office of Science in 2007 to conduct the basic research that will form the foundation of new cellulosic biofuels technology. The GLBRC is headed by the University of Wisconsin (Madison, WI) with Michigan State University (East Lansing, MI) as the major partner. Additional scientific partners are DOE national laboratories, other universities and a biotechnology company.

Nancy Ambrosiano | EurekAlert!
Further information:
http://www.lanl.gov

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>