Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Workouts Strengthen Endothelial Cells' Grasp

17.05.2010
University of Pennsylvania bioengineers have demonstrated that the cells that line blood vessels respond to mechanical forces — the microscopic tugging and pulling on cellular structures — by reinforcing and growing their connections, thus creating stronger adhesive interactions between neighboring cells.

Adherens junctions, the structures that allow cohesion between cells in a tissue, appear to be modulated by endothelial cell-to-cell tugging forces. Both the size of junctions and the magnitude of tugging force between cells grow or decay in concert with activation or inhibition of the molecular motor protein myosin.

The findings extend the understanding of multi-cellular mechanics. The dynamic adaptation of cell–cell adhesions to forces may explain how cells can maintain multi-cellular integrity in the face of different mechanical environments. Understanding how forces affect cell-cell adhesion could provide new opportunities for therapies targeting acute and chronic dysfunction of blood vessels.

Because these adhesions between endothelial cells are what allow these cells to form a tight seal between the blood inside vessels and the surrounding tissues, the research also suggests that changes in mechanical forces might induce endothelial cells to modulate the "tightness" of adhesions with each other, which may then modify the permeability of blood vessels. In many disease states, such as septic shock, diabetes and in tumor vasculature, endothelial cells fail to form the type of tight adhesions with each other that are necessary to prevent the vessels from leaking into the surrounding tissue.

It is known that myosin activity is required for cell-generated contractile forces and that myosin affects cellular organization within tissues through the generation of mechanical forces against the actin cytoskeleton; however, whether forces drive changes in the size of cell–cell adhesions remained an open question. The team demonstrated that, when “exercised,” the actomyosin cytoskeleton in a pair of cells can generate substantial tugging force on adherens junctions, and, in response, the junctions grow stronger. To prove a causal relationship, the group showed that exogenous forces, applied through a micromanipulator, also cause junction growth. This study marks the first time cell-generated forces at the adherens junction have been measured.

To investigate the responsiveness of adherens junctions to tugging force, bioengineer Chris Chen and his laboratory adapted a system of microfabricated force sensors to determine quantitative measurements of force and junction size. Researchers fabricated microneedles (3 microns wide, 9 microns tall, or one-fiftieth the size of a human hair) from a rubber polymer, polydimethylsiloxane, and coated them with an adhesive protein to allow cell attachment. This adhesive protein was transferred to the microneedle substrates in “bowtie patterns” which coaxed the cells to form pairs of cells with a single, cell-cell contact between them. Each cell in the pair attached to about 30 microneedles, and the researchers were able to measure the deflection of the needles as cells exerted traction (inward pulling) forces. The deflection of the needles was proportional to the amount of force generated by the structure.

“The role that physical forces play in cellular behavior has become better understood over the last ten years,” said Chen, the Skirkanich Professor of Innovation in bioengineering in the School of Engineering and Applied Science at Penn. “Now we know that cell structures under mechanical stress don’t necessarily break; they reinforce. Unlike passive adhesion such as with glue or tape, the cell-matrix and cell-cell adhesions that cells use as footholds to attach to surfaces and each-other are adaptive; when they experience force, they hold on tighter.”

In prior research, Chen’s team has demonstrated that the push and pull of cellular forces drives the buckling, extension and contraction of cells during tissue development. These processes ultimately shape the architecture of tissues and play an important role in coordinating cell signaling, gene expression and behavior, and they are essential for wound healing and tissue homeostasis in adult organisms.

This study was conducted by Chen, Zhijun Liu, Daniel M. Cohen, Michael T. Yang, Nathan J. Sniadecki and Sami Alom Ruiz of the Department of Bioengineering at Penn and John L. Tan and Celeste M. Nelson of the Johns Hopkins School of Medicine.

The research, published in the current issue of the journal Proceedings of the National Academy of Sciences, was funded by grants from the National Institutes of Health, Material Research Science and Engineering Center, Center for Engineering Cells and Regeneration of the University of Pennsylvania and Whitaker Foundation.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>