Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular transporter involved in gene silencing - Importin guides switch molecules to their targets

23.02.2009
Specific gene-silencing is involved in the development of cancer and plays an essential role in gene regulation. Small noncoding ribonucleic acids (miRNAs) are important regulators of genes.

In order to switch off a gene, they interact with so called Argonaute proteins - the subsequent complex induces the shutdown or even degradation of the genetic information. Until now, how this molecular switch works was widely unknown. Scientists of the Max Planck Institute of Biochemistry have now identified the protein Importin 8 as a central factor, that facilitates the switch molecule to find its target (Cell (2009), Cell 6th February, 2009).

Ribonucleic acids (RNAs) carry as messenger-RNAs (mRNAs) genetic information from DNA to cellular protein factories, where they are translated into proteins. But they also have important regulatory functions: Small noncoding RNAs (miRNAs) influence mRNA stability and are able to switch off genes by stalling their translation into proteins. Defects of these regulation processes may lead to cancer and neurodegenerative diseases. Therefore miRNAs are important objects of research and - in the future - could become the basis for new therapeutic strategies.

However, miRNAs can't shut off genes on their own: They need to form complexes with other proteins. As far as humans are concerned, the argonaute protein Ago-2 is the key cellular binding partner of miRNAs: The Ago-miRNA complex binds to mRNA and impedes their translation into proteins - either by blocking the translation process or by initiating RNA decomposition. "While there are a lot of studies concerning miRNA processing, the target mRNA recognition and binding by the Ago-miRNA-complex is only poorly understood", says Gunter Meister, the head of the research group "RNA biology" at the Max Planck Institute. Now his group has identified the first protein factor which is required for gene-silencing by Ago-miRNA-complexes: Importin 8.

Importin 8 interacts with Ago and miRNA and is necessary for the binding of the Ago-miRNA-complex to a variety of mRNA targets: In the cytoplasm - i.e. the intracellular space outside the nucleus - it recruits the complex to its target, allowing for efficient and specific gene-silencing. "Without Importin 8 no mRNA deactivation is possible", points Lasse Weinmann out, who conducted the study as part of his PhD thesis.

Furthermore, the scientists discovered a second mode of action of Importin 8: Importins are molecules that are responsible for the transport of proteins into the nucleus. "As we realised that our new factor is an Importin, it was an obvious supposition that transport processes might play a role in gene-silencing", explains Meister. Indeed the scientists proved that Importin 8 is involved in the transport of Ago-miRNA-complexes into the nucleus. This is especially interesting, because over the past years there have been controversial discussions as to whether or not small noncoding RNAs occur in the nucleus. "Our findings indicate that the Ago-miRNA-complex in the nucleus must serve a purpose. Possibly it is involved in gene regulation, too. But it is also conceivable, that there are other, yet unknown, functions", says Meister, "our results are a beginning to solving these questions".

Original Publication:
Weinmann et al.: Importin Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs; Cell. 2009 Feb 6;136(3):496-507.
Contact:
Dr. Gunter Meister
RNA Biology
meister@biochem.mpg.de
Dr. Monika Gödde/Eva-Maria Diehl
Public Relations
Max Planck Institute of Biochemistry
Am Klopferpsitz 18
82152 Martinsried, Germany
Phone: +49 (89) 8578 2824
diehl@biochem.mpg.de

Eva-Maria Diehl | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de/meister
http://www.biochem.mpg.de/en/news/pressroom

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>