Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular transporter involved in gene silencing - Importin guides switch molecules to their targets

23.02.2009
Specific gene-silencing is involved in the development of cancer and plays an essential role in gene regulation. Small noncoding ribonucleic acids (miRNAs) are important regulators of genes.

In order to switch off a gene, they interact with so called Argonaute proteins - the subsequent complex induces the shutdown or even degradation of the genetic information. Until now, how this molecular switch works was widely unknown. Scientists of the Max Planck Institute of Biochemistry have now identified the protein Importin 8 as a central factor, that facilitates the switch molecule to find its target (Cell (2009), Cell 6th February, 2009).

Ribonucleic acids (RNAs) carry as messenger-RNAs (mRNAs) genetic information from DNA to cellular protein factories, where they are translated into proteins. But they also have important regulatory functions: Small noncoding RNAs (miRNAs) influence mRNA stability and are able to switch off genes by stalling their translation into proteins. Defects of these regulation processes may lead to cancer and neurodegenerative diseases. Therefore miRNAs are important objects of research and - in the future - could become the basis for new therapeutic strategies.

However, miRNAs can't shut off genes on their own: They need to form complexes with other proteins. As far as humans are concerned, the argonaute protein Ago-2 is the key cellular binding partner of miRNAs: The Ago-miRNA complex binds to mRNA and impedes their translation into proteins - either by blocking the translation process or by initiating RNA decomposition. "While there are a lot of studies concerning miRNA processing, the target mRNA recognition and binding by the Ago-miRNA-complex is only poorly understood", says Gunter Meister, the head of the research group "RNA biology" at the Max Planck Institute. Now his group has identified the first protein factor which is required for gene-silencing by Ago-miRNA-complexes: Importin 8.

Importin 8 interacts with Ago and miRNA and is necessary for the binding of the Ago-miRNA-complex to a variety of mRNA targets: In the cytoplasm - i.e. the intracellular space outside the nucleus - it recruits the complex to its target, allowing for efficient and specific gene-silencing. "Without Importin 8 no mRNA deactivation is possible", points Lasse Weinmann out, who conducted the study as part of his PhD thesis.

Furthermore, the scientists discovered a second mode of action of Importin 8: Importins are molecules that are responsible for the transport of proteins into the nucleus. "As we realised that our new factor is an Importin, it was an obvious supposition that transport processes might play a role in gene-silencing", explains Meister. Indeed the scientists proved that Importin 8 is involved in the transport of Ago-miRNA-complexes into the nucleus. This is especially interesting, because over the past years there have been controversial discussions as to whether or not small noncoding RNAs occur in the nucleus. "Our findings indicate that the Ago-miRNA-complex in the nucleus must serve a purpose. Possibly it is involved in gene regulation, too. But it is also conceivable, that there are other, yet unknown, functions", says Meister, "our results are a beginning to solving these questions".

Original Publication:
Weinmann et al.: Importin Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs; Cell. 2009 Feb 6;136(3):496-507.
Contact:
Dr. Gunter Meister
RNA Biology
meister@biochem.mpg.de
Dr. Monika Gödde/Eva-Maria Diehl
Public Relations
Max Planck Institute of Biochemistry
Am Klopferpsitz 18
82152 Martinsried, Germany
Phone: +49 (89) 8578 2824
diehl@biochem.mpg.de

Eva-Maria Diehl | Max-Planck-Gesellschaft
Further information:
http://www.biochem.mpg.de/meister
http://www.biochem.mpg.de/en/news/pressroom

More articles from Life Sciences:

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>