Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular team players

30.06.2014

New insights into energy generation by heat shock protein Hsp90

Many enzymes work only with a co-trainer, of sorts. Scientists at the Technische Universitaet Muenchen (TUM) and the Cluster of Excellence Nanosystems Initiative Munich (NIM) show what this kind of cooperation looks like in detail using a novel methodology applied to the heat shock protein Hsp90.


Interaction of Hsp90 with P23 - Image: Bjoern Hellenkamp / TUM


FRET-Set-up in the laboratory - Photo: Christoph Ratzke / TUM

As in a successful football match, all actors in a cell must play in perfect coordination. A typical example for this kind of cooperation can be seen in the heat shock protein Hsp90, which controls the proper folding of other proteins. Together with a second molecule, the co-chaperone P23, it splits the energy source ATP to yield the energy it needs to do its work.

However, while normal enzyme reactions often are easy to follow because the involved proteins alter their conformations clearly, the interaction between P23 and ATP involves significantly less conspicuous changes in state.

... more about:
»ATP »Cellular »Cluster »FRET »Hsp90 »NIM »TUM »enzyme »fluorescent »heat »proteins »shock

Using a sophisticated methodology, a team led by Professor Thorsten Hugel, head of the Research Group for Molecular Machines at the TU München and member of the Cluster of Excellence Nanosystems Initiative Munich (NIM), has now managed to observe this reaction in detail for the first time – step for step with single molecules of Hsp90, P23 and ATP.

Live transmission of molecular processes

To this end, the team adapted the so-called FRET (Foerster resonance energy transfer) methodology to suit their requirements. The approach works by using a variety of fluorescent dye molecules bonded to specific sites in the involved components. When these complexes are excited with light of a specific wavelength, the pigments start to fluoresce in a kind of chain reaction. The emitted fluorescent light reveals the precise distance between the marked sites, right down to the nanometer.

To determine exactly how the components Hsp90, P23 and ATP interact with each other, the biophysicists observed the positions and bonding sequences of the individual molecules over a span of several minutes. From the resulting data they could deduce even the smallest of changes, as well as the biological function of the overall complex.

Energy production only as a team

Using this approach, the Munich researchers successfully demonstrated in detail that the P23 protein strengthens ATP bonding, thereby significantly increasing the amount of energy exploited. They also showed that the two substances bond with Hsp90 this effectively only as a team, thereby allowing ATP splitting to be used so successful.

“Without P23 the heat shock enzyme effectively runs on idle,” explains Bjoern Hellenkamp the results. “When P23 joins the game, it is like shifting into gear. The energy is released and the reaction moves clearly in one direction. This is referred to as directionality.”

In the near future the biophysicists want to investigate in detail how Hsp90 uses the exploited energy. The newly established methodology also allows them to investigate other multicomponent systems with mechanisms that have eluded study because of their minimal conformational alterations.

Publication:

Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery
C. Ratzke, B. Hellenkamp, T. Hugel
Nature Communications 5, Article number: 4192. Published online: 20 June 2014
DOI: 10.1038/ncomms5192

Contact:

Prof. Dr. Thorsten Hugel
Technische Universitaet Muenchen (TUM)
Physik-Department E40
James Franck-Str. 1, 85748 Garching, Germany
E-mail - Telefon: +49 89 289 16781Internet

Andreas Battenberg | Technische Universität München
Further information:
http://www.tum.de/en/about-tum/news/press-releases/short/article/31639/

Further reports about: ATP Cellular Cluster FRET Hsp90 NIM TUM enzyme fluorescent heat proteins shock

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>