Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular team players

30.06.2014

New insights into energy generation by heat shock protein Hsp90

Many enzymes work only with a co-trainer, of sorts. Scientists at the Technische Universitaet Muenchen (TUM) and the Cluster of Excellence Nanosystems Initiative Munich (NIM) show what this kind of cooperation looks like in detail using a novel methodology applied to the heat shock protein Hsp90.


Interaction of Hsp90 with P23 - Image: Bjoern Hellenkamp / TUM


FRET-Set-up in the laboratory - Photo: Christoph Ratzke / TUM

As in a successful football match, all actors in a cell must play in perfect coordination. A typical example for this kind of cooperation can be seen in the heat shock protein Hsp90, which controls the proper folding of other proteins. Together with a second molecule, the co-chaperone P23, it splits the energy source ATP to yield the energy it needs to do its work.

However, while normal enzyme reactions often are easy to follow because the involved proteins alter their conformations clearly, the interaction between P23 and ATP involves significantly less conspicuous changes in state.

... more about:
»ATP »Cellular »Cluster »FRET »Hsp90 »NIM »TUM »enzyme »fluorescent »heat »proteins »shock

Using a sophisticated methodology, a team led by Professor Thorsten Hugel, head of the Research Group for Molecular Machines at the TU München and member of the Cluster of Excellence Nanosystems Initiative Munich (NIM), has now managed to observe this reaction in detail for the first time – step for step with single molecules of Hsp90, P23 and ATP.

Live transmission of molecular processes

To this end, the team adapted the so-called FRET (Foerster resonance energy transfer) methodology to suit their requirements. The approach works by using a variety of fluorescent dye molecules bonded to specific sites in the involved components. When these complexes are excited with light of a specific wavelength, the pigments start to fluoresce in a kind of chain reaction. The emitted fluorescent light reveals the precise distance between the marked sites, right down to the nanometer.

To determine exactly how the components Hsp90, P23 and ATP interact with each other, the biophysicists observed the positions and bonding sequences of the individual molecules over a span of several minutes. From the resulting data they could deduce even the smallest of changes, as well as the biological function of the overall complex.

Energy production only as a team

Using this approach, the Munich researchers successfully demonstrated in detail that the P23 protein strengthens ATP bonding, thereby significantly increasing the amount of energy exploited. They also showed that the two substances bond with Hsp90 this effectively only as a team, thereby allowing ATP splitting to be used so successful.

“Without P23 the heat shock enzyme effectively runs on idle,” explains Bjoern Hellenkamp the results. “When P23 joins the game, it is like shifting into gear. The energy is released and the reaction moves clearly in one direction. This is referred to as directionality.”

In the near future the biophysicists want to investigate in detail how Hsp90 uses the exploited energy. The newly established methodology also allows them to investigate other multicomponent systems with mechanisms that have eluded study because of their minimal conformational alterations.

Publication:

Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery
C. Ratzke, B. Hellenkamp, T. Hugel
Nature Communications 5, Article number: 4192. Published online: 20 June 2014
DOI: 10.1038/ncomms5192

Contact:

Prof. Dr. Thorsten Hugel
Technische Universitaet Muenchen (TUM)
Physik-Department E40
James Franck-Str. 1, 85748 Garching, Germany
E-mail - Telefon: +49 89 289 16781Internet

Andreas Battenberg | Technische Universität München
Further information:
http://www.tum.de/en/about-tum/news/press-releases/short/article/31639/

Further reports about: ATP Cellular Cluster FRET Hsp90 NIM TUM enzyme fluorescent heat proteins shock

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>