Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular team players

30.06.2014

New insights into energy generation by heat shock protein Hsp90

Many enzymes work only with a co-trainer, of sorts. Scientists at the Technische Universitaet Muenchen (TUM) and the Cluster of Excellence Nanosystems Initiative Munich (NIM) show what this kind of cooperation looks like in detail using a novel methodology applied to the heat shock protein Hsp90.


Interaction of Hsp90 with P23 - Image: Bjoern Hellenkamp / TUM


FRET-Set-up in the laboratory - Photo: Christoph Ratzke / TUM

As in a successful football match, all actors in a cell must play in perfect coordination. A typical example for this kind of cooperation can be seen in the heat shock protein Hsp90, which controls the proper folding of other proteins. Together with a second molecule, the co-chaperone P23, it splits the energy source ATP to yield the energy it needs to do its work.

However, while normal enzyme reactions often are easy to follow because the involved proteins alter their conformations clearly, the interaction between P23 and ATP involves significantly less conspicuous changes in state.

... more about:
»ATP »Cellular »Cluster »FRET »Hsp90 »NIM »TUM »enzyme »fluorescent »heat »proteins »shock

Using a sophisticated methodology, a team led by Professor Thorsten Hugel, head of the Research Group for Molecular Machines at the TU München and member of the Cluster of Excellence Nanosystems Initiative Munich (NIM), has now managed to observe this reaction in detail for the first time – step for step with single molecules of Hsp90, P23 and ATP.

Live transmission of molecular processes

To this end, the team adapted the so-called FRET (Foerster resonance energy transfer) methodology to suit their requirements. The approach works by using a variety of fluorescent dye molecules bonded to specific sites in the involved components. When these complexes are excited with light of a specific wavelength, the pigments start to fluoresce in a kind of chain reaction. The emitted fluorescent light reveals the precise distance between the marked sites, right down to the nanometer.

To determine exactly how the components Hsp90, P23 and ATP interact with each other, the biophysicists observed the positions and bonding sequences of the individual molecules over a span of several minutes. From the resulting data they could deduce even the smallest of changes, as well as the biological function of the overall complex.

Energy production only as a team

Using this approach, the Munich researchers successfully demonstrated in detail that the P23 protein strengthens ATP bonding, thereby significantly increasing the amount of energy exploited. They also showed that the two substances bond with Hsp90 this effectively only as a team, thereby allowing ATP splitting to be used so successful.

“Without P23 the heat shock enzyme effectively runs on idle,” explains Bjoern Hellenkamp the results. “When P23 joins the game, it is like shifting into gear. The energy is released and the reaction moves clearly in one direction. This is referred to as directionality.”

In the near future the biophysicists want to investigate in detail how Hsp90 uses the exploited energy. The newly established methodology also allows them to investigate other multicomponent systems with mechanisms that have eluded study because of their minimal conformational alterations.

Publication:

Four-colour FRET reveals directionality in the Hsp90 multicomponent machinery
C. Ratzke, B. Hellenkamp, T. Hugel
Nature Communications 5, Article number: 4192. Published online: 20 June 2014
DOI: 10.1038/ncomms5192

Contact:

Prof. Dr. Thorsten Hugel
Technische Universitaet Muenchen (TUM)
Physik-Department E40
James Franck-Str. 1, 85748 Garching, Germany
E-mail - Telefon: +49 89 289 16781Internet

Andreas Battenberg | Technische Universität München
Further information:
http://www.tum.de/en/about-tum/news/press-releases/short/article/31639/

Further reports about: ATP Cellular Cluster FRET Hsp90 NIM TUM enzyme fluorescent heat proteins shock

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>