Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular stress can induce yeast to promote prion formation

25.07.2011
It's a chicken and egg question. Where do the infectious protein particles called prions come from?

Essentially clumps of misfolded proteins, prions cause neurodegenerative disorders, such as mad cow/Creutzfeld-Jakob disease, in humans and animals. Prions trigger the misfolding and aggregation of their properly folded protein counterparts, but they usually need some kind of "seed" to get started.

Biochemists at Emory University School of Medicine have identified a yeast protein called Lsb2 that can promote spontaneous prion formation. This unstable, short-lived protein is strongly induced by cellular stresses such as heat. Lsb2's properties also illustrate how cells have developed ways to control and regulate prion formation. Research in yeast has shown that sometimes, prions can actually help cells adapt to different conditions.

The results are published in the July 22 issue of the journal Molecular Cell. The senior author is Keith Wilkinson, PhD, professor of biochemistry at Emory University School of Medicine The first author is senior associate Tatiana Chernova, PhD.

The aggregated form of proteins connected with several other neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's can, in some circumstances, act like prions. So the Emory team's finding provides insight into how the ways that cells deal with stress might lead to poisonous protein aggregation in human diseases.

"A direct human homolog of Lsb2 doesn't exist, but there may be a protein that performs the same function," Wilkinson says. "The mechanism may say more about other types of protein aggregates than about classical prions in humans, This mechanism of seeding and growth may be more important for aggregate formation in diseases such as Huntington's."

Lsb2 does not appear to form stable prions by itself. Rather, it seems to bind to and encourage the aggregation of another protein, Sup35, which does form prions.

"Our model is that stress induces high levels of Lsb2, which allows the accumulation of misfolded prion proteins," Wilkinson says. "Lsb2 protects enough of these newborn prion particles from the quality control machinery for a few of them to get out."

The research was supported by the National Institutes of Health.

Reference:

T.A. Chernova et al. Prion Induction by the Short-lived Stress Induced Protein Lsb2 Is Regulated by Ubiquitination and Association with the Actin Cytoskeleton Mol. Cell (2011).

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>