Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Self Destruction

10.06.2014

A new study finds that humans and corals share a key biomechanical pathway that tells cells when to die.

We humans climb trees, compose operas, and send rockets to the far corners of the universe. Corals, on the other hand, just kind of sway there at the bottom of the sea. It’s hard to imagine a creature with seemingly less in common with humans, but a recent study by San Diego State University biologists has discovered that both species share a 500-million-year-old biomechanical pathway responsible for triggering cellular self-destruction. That might sound scary, but killing off defective cells is essential to keeping an organism healthy.


SDSU graduate student Steven Quistad found that humans and corals use the same protein pathway to trigger apoptosis, or cell death, meaning this pathway evolved some 500 million years ago.


Steven Quistad

The finding will help biologists to advance their understanding of the early evolution of multicellular life, conservationists to better understand the plight of modern corals, and medical researchers to develop new drugs to fight diseases like cancer.

Steven Quistad, a graduate student working in the lab of SDSU virologist Forest Rohwer, made the discovery earlier this year somewhat by accident. Rohwer leads SDSU's Viral Information Institute, one of the university's Areas of Excellence. The cross-disciplinary institute explores interactions between viruses and the biosphere in order to improve human and environmental health.

Like Rohwer, Quistad has spent most of his research career so far studying viruses. While analyzing the proteins of the coral Acropora digitifera and matching them against human proteins, he found a peculiar similarity: Both had receptor proteins that receive signals from another protein called tumor necrosis factor, or TNF.

Orderly death

When TNF proteins attach themselves to a cell’s TNF receptors, the cell launches into an orderly self-destruct mode. The protein strands inside the cell break down and the cellular components are cordoned off and carried away to be recycled. The process, known as apoptosis, plays a crucial role in cellular health, allowing defective cells to destroy themselves before they can cause damage to the organism.

When Quistad looked more closely at the coral’s genome, he noticed that it had genes that coded for not just one TNF receptor, but 40 of them. TNF comes in many different “flavors,” and each one matches with a particular receptor. The coral Quistad investigated had 14 different flavors of TNF and more TNF receptors than any other known organism on the planet. Humans, by comparison, have 25 TNF receptors.

So what would happen if you took the human version of a TNF protein and exposed it to a coral’s TNF receptors? Quistad and his colleagues did just that and watched for the telltale signs of apoptosis. Under a microscope, they saw evidence that the coral cell was breaking down within 10 minutes of exposure to human TNF. A series of other cellular signals associated with apoptosis confirmed it: Human TNF sets into motion programmed cell death in corals.

Vice versa?

Next, Quistad and colleagues wondered if coral TNF proteins would trigger apoptosis in human cells. They coaxed E. coli bacteria to express the same TNF proteins produced by corals and exposed them to cultured human tissue. Sure enough, apoptosis occurred in the human cells. Quistad published these results today in the Proceedings of the National Academy of Sciences.

The findings suggest that the pathway by which TNF triggers apoptosis is old. Extremely old.

“The fact that it goes both ways means that these domains haven’t changed in half a billion years,” Quistad said. “Corals are actually much more similar to humans than we ever realized.”

That’s interesting from an evolutionary biology perspective, Quistad said, because approximately 542 million years ago, organized life took off in a very big way. Known as the Cambrian Explosion, this period saw the emergence of the early ancestors of much of the life that exists today, including humans. No one really knows what set off the Cambrian Explosion, but it’s possible the evolution of orderly, systematic cell death played a leading role.

“TNF-induced apoptosis could turn out to be one of the major sparks of the Cambrian Explosion,” Quistad said.

Coral conservation

Unfortunately, after half a billion years of success, corals today aren’t doing so well. The effects of climate change and ocean pollution are taking their toll on the atolls. A fatal stress response known as coral bleaching, whereby corals expel the bacteria that give them their vibrant colors, is decimating corals around the world. Previous studies have linked apoptosis to this process, and indeed, the corals to which Quistad exposed TNF eventually bleached out.

A better understanding of how TNF mediates apoptosis in coral might allow conservationists to identify more resilient species, and then reintroduce these hardier corals to places where coral loss is hurting the local ecosystem, Quistad said.

Preserving and learning from these corals is important for human health, too. Corals are wonderfully complex organisms, Quistad said, and we’re only beginning to learn their secrets.

“Many people look at a coral and think it’s just a slimy rock,” he said. “They think, ‘How can it be so complex at a molecular level when it looks so simple?’”

Quistad said that by studying corals’ various flavors of TNF proteins and TNF receptors, researchers might uncover medical properties useful for killing specific kinds of renegade cells, such as cancer cells.

“We have a lot to learn from corals about our own immune system,” he said.

Beth Chee | Eurek Alert!
Further information:
http://newscenter.sdsu.edu/sdsu_newscenter/news.aspx?s=75028

Further reports about: Cellular TNF apoptosis bacteria corals pathway proteins receptor signals viruses

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>