Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular Self Destruction

10.06.2014

A new study finds that humans and corals share a key biomechanical pathway that tells cells when to die.

We humans climb trees, compose operas, and send rockets to the far corners of the universe. Corals, on the other hand, just kind of sway there at the bottom of the sea. It’s hard to imagine a creature with seemingly less in common with humans, but a recent study by San Diego State University biologists has discovered that both species share a 500-million-year-old biomechanical pathway responsible for triggering cellular self-destruction. That might sound scary, but killing off defective cells is essential to keeping an organism healthy.


SDSU graduate student Steven Quistad found that humans and corals use the same protein pathway to trigger apoptosis, or cell death, meaning this pathway evolved some 500 million years ago.


Steven Quistad

The finding will help biologists to advance their understanding of the early evolution of multicellular life, conservationists to better understand the plight of modern corals, and medical researchers to develop new drugs to fight diseases like cancer.

Steven Quistad, a graduate student working in the lab of SDSU virologist Forest Rohwer, made the discovery earlier this year somewhat by accident. Rohwer leads SDSU's Viral Information Institute, one of the university's Areas of Excellence. The cross-disciplinary institute explores interactions between viruses and the biosphere in order to improve human and environmental health.

Like Rohwer, Quistad has spent most of his research career so far studying viruses. While analyzing the proteins of the coral Acropora digitifera and matching them against human proteins, he found a peculiar similarity: Both had receptor proteins that receive signals from another protein called tumor necrosis factor, or TNF.

Orderly death

When TNF proteins attach themselves to a cell’s TNF receptors, the cell launches into an orderly self-destruct mode. The protein strands inside the cell break down and the cellular components are cordoned off and carried away to be recycled. The process, known as apoptosis, plays a crucial role in cellular health, allowing defective cells to destroy themselves before they can cause damage to the organism.

When Quistad looked more closely at the coral’s genome, he noticed that it had genes that coded for not just one TNF receptor, but 40 of them. TNF comes in many different “flavors,” and each one matches with a particular receptor. The coral Quistad investigated had 14 different flavors of TNF and more TNF receptors than any other known organism on the planet. Humans, by comparison, have 25 TNF receptors.

So what would happen if you took the human version of a TNF protein and exposed it to a coral’s TNF receptors? Quistad and his colleagues did just that and watched for the telltale signs of apoptosis. Under a microscope, they saw evidence that the coral cell was breaking down within 10 minutes of exposure to human TNF. A series of other cellular signals associated with apoptosis confirmed it: Human TNF sets into motion programmed cell death in corals.

Vice versa?

Next, Quistad and colleagues wondered if coral TNF proteins would trigger apoptosis in human cells. They coaxed E. coli bacteria to express the same TNF proteins produced by corals and exposed them to cultured human tissue. Sure enough, apoptosis occurred in the human cells. Quistad published these results today in the Proceedings of the National Academy of Sciences.

The findings suggest that the pathway by which TNF triggers apoptosis is old. Extremely old.

“The fact that it goes both ways means that these domains haven’t changed in half a billion years,” Quistad said. “Corals are actually much more similar to humans than we ever realized.”

That’s interesting from an evolutionary biology perspective, Quistad said, because approximately 542 million years ago, organized life took off in a very big way. Known as the Cambrian Explosion, this period saw the emergence of the early ancestors of much of the life that exists today, including humans. No one really knows what set off the Cambrian Explosion, but it’s possible the evolution of orderly, systematic cell death played a leading role.

“TNF-induced apoptosis could turn out to be one of the major sparks of the Cambrian Explosion,” Quistad said.

Coral conservation

Unfortunately, after half a billion years of success, corals today aren’t doing so well. The effects of climate change and ocean pollution are taking their toll on the atolls. A fatal stress response known as coral bleaching, whereby corals expel the bacteria that give them their vibrant colors, is decimating corals around the world. Previous studies have linked apoptosis to this process, and indeed, the corals to which Quistad exposed TNF eventually bleached out.

A better understanding of how TNF mediates apoptosis in coral might allow conservationists to identify more resilient species, and then reintroduce these hardier corals to places where coral loss is hurting the local ecosystem, Quistad said.

Preserving and learning from these corals is important for human health, too. Corals are wonderfully complex organisms, Quistad said, and we’re only beginning to learn their secrets.

“Many people look at a coral and think it’s just a slimy rock,” he said. “They think, ‘How can it be so complex at a molecular level when it looks so simple?’”

Quistad said that by studying corals’ various flavors of TNF proteins and TNF receptors, researchers might uncover medical properties useful for killing specific kinds of renegade cells, such as cancer cells.

“We have a lot to learn from corals about our own immune system,” he said.

Beth Chee | Eurek Alert!
Further information:
http://newscenter.sdsu.edu/sdsu_newscenter/news.aspx?s=75028

Further reports about: Cellular TNF apoptosis bacteria corals pathway proteins receptor signals viruses

More articles from Life Sciences:

nachricht Surprising similarity in fly and mouse motion vision
30.07.2015 | Max Planck Institute of Neurobiology, Martinsried

nachricht Intracellular microlasers could allow precise labeling of a trillion individual cells
30.07.2015 | Massachusetts General Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Surprising similarity in fly and mouse motion vision

30.07.2015 | Life Sciences

Efficient Infrared Heat Saves Time and Energy in the Manufacture of Motor Vehicle Carpets

30.07.2015 | Trade Fair News

Roentgen prize goes to Dr Eleftherios Goulielmakis

30.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>