Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cellular secrets exposed in living color

‘On–off’ fluorescent probes allow multicolor detection of nucleic acid strands within living cells

One of the best ways to watch the complex workings of living cells is to label components, such as DNA segments, with fluorescent probes—small molecules with active optical properties. Then, using a fluorescent microscope, movement of the labeled DNA can be tracked through the entire lifespan of a cell without disruption.

Unfortunately, conventional probes are always ‘on’—emitting fluorescent light—regardless of whether the target nucleic acid is present or not. Now, Akimitsu Okamoto and colleagues from the RIKEN Advanced Science Institute in Wako have designed new fluorescent probes that turn on only when a specific nucleic acid strand is recognized1. Because these probes can be labeled with different fluorescent colors, it is now possible to image multiple processes in a cell simultaneously.

Okamoto’s probes comprise a pair of identical fluorescent dye molecules, linked together by a Y-shaped organic chain to a DNA strand. When the probe is not attached to an RNA target, it is in the ‘off’ state and emits no fluorescent light. This is because the two dye molecules stack parallel to one another such that they can access each other’s electronic states, suppressing the fluorescence through what is known as an excitonic interaction.

When the probe encounters a complementary RNA strand, however, it undergoes hybridization and forms a double helix. In this configuration, the two dye molecules on the probe become separated and stack between groups in the double helix. Immediately, fluorescence is restored and the probe turns ‘on’.

Okamoto and his team found that by adding different types of dyes to the ‘on–off’ probes they emitted distinct fluorescent colors after hybridization. Using this technology, the researchers set out to visualize, in real-time, microRNAs, which are small nucleic acids that regulate gene expression.

In their experiment, three types of microRNA strands were injected into a living cell. Then, three probes were added; each one complementary to one of the microRNA strands. Fluorescence in three different colors was instantly seen in the middle of the cells, demonstrating successful recognition of multiple targets.

According to Okamoto, while scientists know how RNA is synthesized, spliced and transported within a cell, much of this information is fragmented. Correlating this knowledge with time-dependent, multicolor imaging will help clarify gene expression mechanisms in living organisms.

“I want to see the life of RNA in cells,” says Okamoto. “We need long-term observations to know when, where, which and how RNA works—from birth to death.”

The corresponding author for this highlight is based at the Okamoto Initiative Research Unit, RIKEN Advanced Science Institute

Saeko Okada | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Here comes the long-sought-after iron-munching microbe
25.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Novel method to benchmark and improve the performance of protein measumeasurement techniques
25.10.2016 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

First-time reconstruction of infectious bat influenza viruses

25.10.2016 | Life Sciences

Novel method to benchmark and improve the performance of protein measumeasurement techniques

25.10.2016 | Life Sciences

Amazon rain helps make more rain

25.10.2016 | Life Sciences

More VideoLinks >>>