Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular secrets exposed in living color

02.11.2009
‘On–off’ fluorescent probes allow multicolor detection of nucleic acid strands within living cells

One of the best ways to watch the complex workings of living cells is to label components, such as DNA segments, with fluorescent probes—small molecules with active optical properties. Then, using a fluorescent microscope, movement of the labeled DNA can be tracked through the entire lifespan of a cell without disruption.

Unfortunately, conventional probes are always ‘on’—emitting fluorescent light—regardless of whether the target nucleic acid is present or not. Now, Akimitsu Okamoto and colleagues from the RIKEN Advanced Science Institute in Wako have designed new fluorescent probes that turn on only when a specific nucleic acid strand is recognized1. Because these probes can be labeled with different fluorescent colors, it is now possible to image multiple processes in a cell simultaneously.

Okamoto’s probes comprise a pair of identical fluorescent dye molecules, linked together by a Y-shaped organic chain to a DNA strand. When the probe is not attached to an RNA target, it is in the ‘off’ state and emits no fluorescent light. This is because the two dye molecules stack parallel to one another such that they can access each other’s electronic states, suppressing the fluorescence through what is known as an excitonic interaction.

When the probe encounters a complementary RNA strand, however, it undergoes hybridization and forms a double helix. In this configuration, the two dye molecules on the probe become separated and stack between groups in the double helix. Immediately, fluorescence is restored and the probe turns ‘on’.

Okamoto and his team found that by adding different types of dyes to the ‘on–off’ probes they emitted distinct fluorescent colors after hybridization. Using this technology, the researchers set out to visualize, in real-time, microRNAs, which are small nucleic acids that regulate gene expression.

In their experiment, three types of microRNA strands were injected into a living cell. Then, three probes were added; each one complementary to one of the microRNA strands. Fluorescence in three different colors was instantly seen in the middle of the cells, demonstrating successful recognition of multiple targets.

According to Okamoto, while scientists know how RNA is synthesized, spliced and transported within a cell, much of this information is fragmented. Correlating this knowledge with time-dependent, multicolor imaging will help clarify gene expression mechanisms in living organisms.

“I want to see the life of RNA in cells,” says Okamoto. “We need long-term observations to know when, where, which and how RNA works—from birth to death.”

The corresponding author for this highlight is based at the Okamoto Initiative Research Unit, RIKEN Advanced Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6078
http://www.researchsea.com

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>