Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular secrets exposed in living color

02.11.2009
‘On–off’ fluorescent probes allow multicolor detection of nucleic acid strands within living cells

One of the best ways to watch the complex workings of living cells is to label components, such as DNA segments, with fluorescent probes—small molecules with active optical properties. Then, using a fluorescent microscope, movement of the labeled DNA can be tracked through the entire lifespan of a cell without disruption.

Unfortunately, conventional probes are always ‘on’—emitting fluorescent light—regardless of whether the target nucleic acid is present or not. Now, Akimitsu Okamoto and colleagues from the RIKEN Advanced Science Institute in Wako have designed new fluorescent probes that turn on only when a specific nucleic acid strand is recognized1. Because these probes can be labeled with different fluorescent colors, it is now possible to image multiple processes in a cell simultaneously.

Okamoto’s probes comprise a pair of identical fluorescent dye molecules, linked together by a Y-shaped organic chain to a DNA strand. When the probe is not attached to an RNA target, it is in the ‘off’ state and emits no fluorescent light. This is because the two dye molecules stack parallel to one another such that they can access each other’s electronic states, suppressing the fluorescence through what is known as an excitonic interaction.

When the probe encounters a complementary RNA strand, however, it undergoes hybridization and forms a double helix. In this configuration, the two dye molecules on the probe become separated and stack between groups in the double helix. Immediately, fluorescence is restored and the probe turns ‘on’.

Okamoto and his team found that by adding different types of dyes to the ‘on–off’ probes they emitted distinct fluorescent colors after hybridization. Using this technology, the researchers set out to visualize, in real-time, microRNAs, which are small nucleic acids that regulate gene expression.

In their experiment, three types of microRNA strands were injected into a living cell. Then, three probes were added; each one complementary to one of the microRNA strands. Fluorescence in three different colors was instantly seen in the middle of the cells, demonstrating successful recognition of multiple targets.

According to Okamoto, while scientists know how RNA is synthesized, spliced and transported within a cell, much of this information is fragmented. Correlating this knowledge with time-dependent, multicolor imaging will help clarify gene expression mechanisms in living organisms.

“I want to see the life of RNA in cells,” says Okamoto. “We need long-term observations to know when, where, which and how RNA works—from birth to death.”

The corresponding author for this highlight is based at the Okamoto Initiative Research Unit, RIKEN Advanced Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6078
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>