Cellular pathway could provide evidence of how cancer and obesity are linked

University of Alberta researcher Richard Lamb is on his way to understanding the correlation and it's a good example of how the scientific process works.

Lamb is studying a cell pathway in the human body that regulates cell growth. In their most recent work, Lamb and his research group have found that this pathway can be affected by sources not within the cell, specifically amino acid nutrients. Amino acids are the building blocks of tissues and muscle in the human body.

What makes this interesting is that these amino acids are found to be elevated in obese people. That means this signalling pathway, called mTOR, could be hyper-activated by these heightened amino acid nutrients and this could affect how human cells respond to stress and disease among a number of other things. Lamb and his team will now investigate if cancer cells are aided by this potential hyper-activity of the pathway.

Lamb's work is published in the prestigious journal Molecular Cell, and as is normal scientific process, this will elicit calls from researchers around the world who could have other ideas on why this pathway is relevant to disease.

Media Contact

Quinn Phillips EurekAlert!

More Information:

http://www.ualberta.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors