Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cellular Origin of a Rare Form of Breast Cancer Identified

Identifying the cellular origins of breast cancer might lead to earlier diagnosis and more efficient management of the disease.

New research led by Charlotte Kuperwasser of Tufts University School of Medicine (TUSM) has determined that common forms of breast cancer originate from breast cells known as luminal epithelial cells while rarer forms of breast cancer, such as metaplastic carcinomas, originate from basal epithelial cell types. The study was published online ahead of print this week in PNAS Early Edition as part of its breast cancer special feature.

Clinicians and researchers classify breast cancers into subtypes based on both clinical features and molecular features, including expression of certain genes and proteins. These classifications help determine diagnosis, treatment decisions, and patient prognosis. The most common form of breast cancer, called invasive ductal carcinoma, is classified broadly into two types based on molecular features of the tumor cells: luminal-like cancers, which are sensitive to hormones, and the more aggressive basal-like cancers, which are not sensitive to hormones and tend to have a poorer prognosis.

However, there are also rare forms of breast cancer, some of which are called metaplastic carcinomas, where the cancer cells no longer resemble cells of the breast. Scientists do not yet fully understand how and why these different types of breast cancers form but one theory is that they originate from adult breast tissue stem cells.

“For the past several decades, most research efforts have been focused on discovering cancer-causing genes in hope that this information might help us discover better treatments for breast cancer. While these efforts have led to successes in treating some common forms of breast cancer, they have not provided us with information regarding where breast cancer originates and in particular, the origins of rare forms of metaplastic breast cancers for which the best course of treatment has not yet been determined,” said Kuperwasser, PhD, associate professor in the department of anatomy and cellular biology, Tufts University School of Medicine, and a member of the genetics and cell, molecular & developmental program faculties at the Sackler School of Graduate Biomedical Sciences at Tufts and the Molecular Oncology Research Institute (MORI) at Tufts Medical Center.

In light of this, the research team chose to study the two major types of cells in the human breast, those that line the ducts and produce milk (luminal cells) and those that surround the ductal cells and contract to move the milk from the ducts (basal/myoepithelial cells) to determine whether they might form different types of breast cancers.

“We found that when basal/myoepithelial breast cells become cancerous they no longer resemble breast tissue; instead they look more like cells of the skin and form rare metaplastic breast cancers. In contrast, when luminal breast cells become cancerous, they retain the structure and molecular features of more common types of breast cancers,” said first author Patricia Keller, PhD, post-doctoral associate in the anatomy and cellular biology department at TUSM and a member of the Kuperwasser lab and MORI.

The researchers introduced cancer-causing genes into healthy breast cells obtained from breast reduction surgeries. Using specialized markers, they were able to isolate different types of normal breast cells and evaluate how they behaved as they became cancerous in a mouse model.

“By understanding more about the cellular beginnings of cancer, we can direct our research toward investigating preventive methods and possibly even developing new therapies,” said Kuperwasser.

This study adds to Kuperwasser’s growing body of work in breast cancer research. Earlier work identified a mechanism behind the preferential formation of aggressive breast cancers in people carrying a mutated BRCA1 gene. A team co-led by Kuperwasser and Philip Hinds, of Tufts Medical Center, also proposed and supported a model for breast cell differentiation that identified two distinct populations of progenitor cells for breast cancer. Her work has been published in Cell Stem Cell, Breast Cancer Research, Cancer Cell, and Nature Protocols.

Additional authors on the study are Lisa Arendt, PhD, DVM, senior research associate in the Kuperwasser lab at TUSM and Tufts Medical Center; Adam Skibinski, an MD, PhD student in the cell, molecular and development biology program at the Sackler School of Graduate Biomedical Sciences at Tufts; Tanya Logvinenko, PhD, of the Biostatistics Research Center, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center; Shumin Dong, MD, formerly of the department of oral and maxillofacial pathology at Tufts University School of Dental Medicine; Ina Klebba, BSc, formerly a senior research assistant in Kuperwasser’s lab; Avi E. Smith, BA, research technician at Tufts University School of Dental Medicine; Aleix Prat, MD, and Charles Perou, PhD, both of the departments of genetics, and pathology & laboratory medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill; Hannah Gilmore, MD, and Stuart Schnitt, MD, both of the departments of pathology and medicine, Beth Israel Deaconess Medical Center and Harvard Medical School; Stephen Naber, MD, PhD, of the department of pathology, Tufts Medical Center, and Jonathan A. Garlick, DDS, PhD, of the division of cancer biology & tissue engineering as well as the department of oral and maxillofacial pathology, Tufts University School of Dental Medicine.

This work was supported by a Broadway on Beachside Postdoctoral Fellowship from the New England Division of the American Cancer Society; and by grants from the Raymond and Beverly Sackler Foundation, the Breast Cancer Research Foundation, the Department of Defense Breast Cancer Research Program; and the National Cancer Institute and the National Institute of Dental & Craniofacial Research, both of the National Institutes of Health.

Keller PJ, Arendt LM, Skibinski A, Logvinenko T, Klebba I, Dong S, Smith AE, Prat A, Perou CM, Gilmore H, Schnitt S, Naber SP, Garlick JA, Kuperwasser C. PNAS Early Edition, “Defining the cellular precursors to human breast cancer.” Published ahead of print, September 21, 2011, doi:10.1073/pnas.1017626108

About Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences

Tufts University School of Medicine and the Sackler School of Graduate Biomedical Sciences at Tufts University are international leaders in innovative medical education and advanced research. The School of Medicine and the Sackler School are renowned for excellence in education in general medicine, biomedical sciences, special combined degree programs in business, health management, public health, bioengineering and international relations, as well as basic and clinical research at the cellular and molecular level. Ranked among the top in the nation, the School of Medicine is affiliated with six major teaching hospitals and more than 30 health care facilities. Tufts University School of Medicine and the Sackler School undertake research that is consistently rated among the highest in the nation for its effect on the advancement of medical science.

If you are a member of the media interested in learning more about this topic or speaking with a faculty member at Tufts University School of Medicine or the Sackler School of Graduate Biomedical Sciences, please contact Siobhan Gallagher at 617-636-6586.

Siobhan Gallagher | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>