Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cellular metabolism self-adapts to protect against free radicals

08.09.2011
Feedback mechanism coordinates cellular respiration and the degradation of free oxygen radicals

Oxygen-consuming organisms obtain energy through cellular respiration, which is the transformation of carbohydrates and oxygen into carbon dioxide and water. This process also produces toxic oxygen radicals which must be decomposed immediately, as they would otherwise cause damage to cells.

Scientists from the Max Planck Institute for Molecular Genetics in Berlin have now discovered a mechanism, with whose help cells can coordinate respiratory activity and the degradation of free radicals. Thus, the cells prepare their metabolism for free radicals before they even arise.

Cellular respiration is a very efficient process through which a lot of energy is generated from a few sugar molecules and oxygen. However, up to two percent of the oxygen used in this process is transformed into superoxide, a free radical that is toxic to cells. A considerable proportion of this superoxide evades the respiratory chain of the mitochondria and poses a threat to biological macromolecules like DNA, RNA, proteins and fatty acids.

However, evolution has equipped eukaryotic cells with comprehensive mechanisms that can decompose free radicals which arise in the cell and therefore prevent damage to the cell. These mechanisms work extremely efficiently and are well coordinated so that, contrary to popular belief, the treatment of healthy tissue with natural or synthetic antioxidants can disrupt the natural balance and, at worst, damage cells and accelerate the aging process.

Researchers at the Max Planck Institute for Molecular Genetics compared respiring and non-respiring yeast cells. When respiration was activated, there was a direct increase in the cells’ tolerance to oxidised substances; however, contrary to expectation, this was not accompanied by a rise in the concentration of free radicals. This proved that respiring cells are entirely capable of dealing with the increased formation of free radicals and keeping them at the level of the non-respiring cells.

According to the researchers, a hitherto undiscovered feedback mechanism located within a central metabolic pathway is responsible for this process. The carbohydrate-degrading enzyme pyruvate kinase regulates the respiratory activity of yeast cells. It is less active in respiring cells and this leads to the accumulation of its substrate phosphoenolpyruvate. The accumulation of this substance inhibits another glycolytic enzyme, triosephosphate isomerase. The researchers were already very familiar with this enzyme: they had previously discovered that a low level of activity of this enzyme provides protection against free radicals. “If we block this feedback mechanism artificially while activating respiration, the free radical concentration increased significantly and damaged proteins and mitochondria. This tells us that cells can predict when the radical production will rise and adapt their metabolism before the free radicals are even produced,” explains Markus Ralser, researcher at the Max Planck Institute for Molecular Genetics and the University of Cambridge.

This discovery may prove to be of particular significance for cancer research. The enzyme pyruvate kinase is partly responsible for the fact that tumour cells usually respire less and thus have a higher rate of sugar metabolism than healthy tissue. This effect is named after Otto Warburg, who was the first scientist to demonstrate this higher rate of sugar metabolism in cancer cells in the 1920s. The Max Planck researchers hope that it will be possible to use this newly discovered feedback mechanism to cause targeted nutrition deficiency in tumour cells and render them more vulnerable in this way.

Contact

Dr. Patricia Marquardt
Max Planck Institute for Molecular Genetics, Berlin
Phone: +49 30 8413-1716
Fax: +49 30 8413-1671
Email: patricia.marquardt@molgen.mpg.de
Original publication
Nana-Maria Grüning, Mark Rinnerthaler, Katharina Bluemlein, Michael Mülleder, Mirjam MC, Wamelink, Hans Lehrach, Cornelis Jakobs, Michael Breitenbach and Markus Ralser
Pyruvate kinase triggers a metabolic feedback loop that controls redox metabolism in respiring cells

Cell Metabolism, September 7, 2011

Dr. Patricia Marquardt | Max-Planck-Institute
Further information:
http://www.mpg.de/4413369/cells_protection_free_radicals

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>