Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cellular Intricacies of Cystic Fibrosis

20.09.2011
Technique for observing how proteins work in human tissue from cystic fibrosis patients yields new insights into the cellular processes of disease

When researchers discovered the primary genetic defect that causes cystic fibrosis (CF) back in 1989, they opened up a new realm of research into treatment and a cure for the disease. Since then, scientists have been able to clone the defective gene and study its effects in animals. Now researchers at the University of North Carolina at Chapel Hill have developed a technique for observing the defects at work in human tissue donated by patients with CF.

This technique has yielded an extraordinary view of the cellular intricacies of CF, which Martina Gentzsch, assistant professor of cell and developmental biology, will discuss at the 7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels, being held September 18-22 in Pacific Grove, Calif. The meeting is sponsored by the American Physiological Society. Her poster presentation is entitled, “The Cystic Fibrosis Transmembrane Conductance Regulator Inhibits Proteolytic Stimulation of ENaC.”

Ion Transport Processes in CF
Cystic fibrosis is caused by a mutation in the gene that encodes a protein called cystic fibrosis transmembrane conductance regulator (CFTR), which functions as a chloride channel at the surface of airways and moves chloride out of the cells. CFTR also regulates another protein called epithelial sodium channel (ENaC), which is responsible for transporting sodium into cells. Thus far, scientists have been able to establish that when the CFTR mutation is present, ENaC becomes overactive and causes the cells in the lungs to absorb too much sodium. Water follows the sodium from the cells’ surfaces into the cells, and as a result, the airways become dry and mucous becomes thick and sticky, leading to infections in the lungs.

To observe how CFTR regulates ENaC, Dr. Gentzsch and her team took cells from healthy lung tissue and CF lung tissue and maintained them in a liquid medium. The cells’ surfaces were exposed to air, which prompted the cells to grow and behave as though they were still inside human lungs. Then the team studied proteolytic cleavage of ENaC, a process in which the ENaC protein is cut by enzymes called proteases at specific sites on the protein. This limited cleavage causes ENaC to become active. When the team analyzed the cells’ behavior, they found that ENaC was more likely to have undergone cleavage in cells from CF tissue.

According to Dr. Gentzsch, these observations prompted two questions. First, what role does CFTR play in regulating ENaC cleavage? Second, why is ENaC cleavage not regulated in CF?

“CFTR binds to ENaC, so our initial thought was that close contact of ENaC to CFTR protects ENaC from being cleaved. But another possibility is that CFTR is responsible for suppressing ENaC cleavage and activation,” said Dr. Gentzsch. In other words, the absence of a normally functioning CFTR protein may cause ENaC overactivity. Because there is more cleavage when the CFTR mutation is present, it implies that healthy CFTR prevents ENaC cleavage and activation, but defective CFTR does not.

Either way, Dr. Gentzsch feels that both CFTR and ENaC should be considered when developing therapies for CF. “Successful treatments should address both decreased CFTR function and increased salt absorption caused by ENaC overactivity.”

About the Conference
The 7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels explores the relationship between fluid regulation and hypertension, the cardiovascular system and other organ systems. The American Physiological Society is sponsoring the conference which will highlight new scientific findings and offers talks from experts from around the world. Additional information about the conference, being held September 18-22, 2011 in Pacific Grove, CA, can be found online at http://www.the-aps.org/press/releases/11/24.htm.

NOTE TO EDITORS: For a copy of Dr. Gentzsch’s abstract, or to schedule an interview, please contact Donna Krupa at 301.634.7209 or dkrupa@the-aps.org.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society has been an integral part of the discovery process since it was established in 1887. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | Newswise Science News
Further information:
http://www.the-aps.org

Further reports about: CFTR Cellular ENaC Ionen Pacific coral aldosterone cystic cystic fibrosis fibrosis intricacies lung tissue

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>