Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Cellular Intricacies of Cystic Fibrosis

20.09.2011
Technique for observing how proteins work in human tissue from cystic fibrosis patients yields new insights into the cellular processes of disease

When researchers discovered the primary genetic defect that causes cystic fibrosis (CF) back in 1989, they opened up a new realm of research into treatment and a cure for the disease. Since then, scientists have been able to clone the defective gene and study its effects in animals. Now researchers at the University of North Carolina at Chapel Hill have developed a technique for observing the defects at work in human tissue donated by patients with CF.

This technique has yielded an extraordinary view of the cellular intricacies of CF, which Martina Gentzsch, assistant professor of cell and developmental biology, will discuss at the 7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels, being held September 18-22 in Pacific Grove, Calif. The meeting is sponsored by the American Physiological Society. Her poster presentation is entitled, “The Cystic Fibrosis Transmembrane Conductance Regulator Inhibits Proteolytic Stimulation of ENaC.”

Ion Transport Processes in CF
Cystic fibrosis is caused by a mutation in the gene that encodes a protein called cystic fibrosis transmembrane conductance regulator (CFTR), which functions as a chloride channel at the surface of airways and moves chloride out of the cells. CFTR also regulates another protein called epithelial sodium channel (ENaC), which is responsible for transporting sodium into cells. Thus far, scientists have been able to establish that when the CFTR mutation is present, ENaC becomes overactive and causes the cells in the lungs to absorb too much sodium. Water follows the sodium from the cells’ surfaces into the cells, and as a result, the airways become dry and mucous becomes thick and sticky, leading to infections in the lungs.

To observe how CFTR regulates ENaC, Dr. Gentzsch and her team took cells from healthy lung tissue and CF lung tissue and maintained them in a liquid medium. The cells’ surfaces were exposed to air, which prompted the cells to grow and behave as though they were still inside human lungs. Then the team studied proteolytic cleavage of ENaC, a process in which the ENaC protein is cut by enzymes called proteases at specific sites on the protein. This limited cleavage causes ENaC to become active. When the team analyzed the cells’ behavior, they found that ENaC was more likely to have undergone cleavage in cells from CF tissue.

According to Dr. Gentzsch, these observations prompted two questions. First, what role does CFTR play in regulating ENaC cleavage? Second, why is ENaC cleavage not regulated in CF?

“CFTR binds to ENaC, so our initial thought was that close contact of ENaC to CFTR protects ENaC from being cleaved. But another possibility is that CFTR is responsible for suppressing ENaC cleavage and activation,” said Dr. Gentzsch. In other words, the absence of a normally functioning CFTR protein may cause ENaC overactivity. Because there is more cleavage when the CFTR mutation is present, it implies that healthy CFTR prevents ENaC cleavage and activation, but defective CFTR does not.

Either way, Dr. Gentzsch feels that both CFTR and ENaC should be considered when developing therapies for CF. “Successful treatments should address both decreased CFTR function and increased salt absorption caused by ENaC overactivity.”

About the Conference
The 7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels explores the relationship between fluid regulation and hypertension, the cardiovascular system and other organ systems. The American Physiological Society is sponsoring the conference which will highlight new scientific findings and offers talks from experts from around the world. Additional information about the conference, being held September 18-22, 2011 in Pacific Grove, CA, can be found online at http://www.the-aps.org/press/releases/11/24.htm.

NOTE TO EDITORS: For a copy of Dr. Gentzsch’s abstract, or to schedule an interview, please contact Donna Krupa at 301.634.7209 or dkrupa@the-aps.org.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society has been an integral part of the discovery process since it was established in 1887. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | Newswise Science News
Further information:
http://www.the-aps.org

Further reports about: CFTR Cellular ENaC Ionen Pacific coral aldosterone cystic cystic fibrosis fibrosis intricacies lung tissue

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>