Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cells traverse developmental divide via Blimp

A method for single-cell genomic profiling has helped researchers to identify a putative ‘master switch’ for reproductive cell development in the mouse embryo

An animal’s reproductive capabilities are established early in development, when a homogeneous embryonic cell population gives rise to two distinct cell types—somatic cells that form the vast majority of body tissues, and primordial germ cells (PGCs) that ultimately yield spermatozoa or ova.

Identifying genes responsible for ‘programming’ PGC development will be essential to fully understand this essential developmental process. Unfortunately, existing techniques for large-scale gene expression profiling are designed for use with multicellular samples—an ineffective strategy for PGC analysis.

“PGCs are small in number—especially at early stages—and are embedded in somatic neighbors,” explains Mitinori Saitou, of the RIKEN Center for Developmental Biology in Kobe. “Therefore, for systematically identifying genes specific to PGCs, single-cell analysis is considered to be essential.” Prior work from Saitou’s team identified several genes potentially important to PGC development. Now, his group has developed a powerful new technique for preparation and amplification of nucleic acids from individual cells, enabling stage-specific genomic profiling of mouse PGCs in unprecedented detail1.

The researchers focused on identifying genes regulated by Blimp1, a gene identified in their earlier work2. After analyzing PGCs from various developmental stages, it became clear that Blimp1 expression specifically increases in these cells over time. They also observed that although early-stage PGCs exhibit expression profiles for certain developmental genes that are similar to those observed in somatic cells, continued expression of Blimp1 leads to reversal of these expression patterns, actively driving development onto a PGC-specific trajectory.

A broader comparison of stage-specific gene expression in PGCs and somatic cells enabled Saitou’s team to assemble clusters of genes that are generally up- or down-regulated by Blimp1, allowing them to be categorized respectively as ‘specification’ or ‘somatic’ genes. Certain gene types were enriched for each category—including cell division regulators for the somatic genes and effectors of germ cell development for the specification genes—and each category also contained distinct sets of genes involved in embryonic development and body pattern formation.

Follow-up analyses confirmed that Blimp1 plays a central role in managing appropriate regulation of both somatic and specification genes for PGC development. “To me, the fact that Blimp1 represses essentially all the genes normally repressed in PGCs in comparison to their somatic neighbors is the most important finding,” says Saitou. Now, having glimpsed the ‘big picture’, Saitou’s team hunting for the primary target genes for Blimp1, and the mechanism by which it switches them on to set PGC development in motion.

1. Kurimoto, K., Yabuta, Y., Ohinata, Y., Shigeta, M., Yamanaka, K. & Saitou, M. Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice. Genes & Development 22, 1617–1635 (2008).

2. Ohinata, Y., Payer, B., O’Carroll, D., Ancelin, K., Ono, Y., Sano, M., Barton, S.C., Obukhanych, T., Nussenzweig, M., Tarakhovsky, A., et al. Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436, 207–213 (2005).

The corresponding author for this highlight is based at the RIKEN Laboratory for Mammalian Germ Cell Biology

Saeko Okada | ResearchSEA
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>