Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells talk more in areas Alzheimer’s hits first, boosting plaque component

03.05.2011
Higher levels of cell chatter boost amyloid beta in the brain regions that Alzheimer’s hits first, researchers at Washington University School of Medicine in St. Louis report. Amyloid beta is the main ingredient of the plaque lesions that are a hallmark of Alzheimer’s.

These brain regions belong to a network that is more active when the brain is at rest. The discovery that cells in these regions communicate with each other more often than cells in other parts of the brain may help explain why these areas are frequently among the first to develop plaques, according to the researchers.

Working with mice genetically engineered to develop Alzheimer’s type-brain changes, scientists reduced the size and number of plaques by decreasing brain cell activity in certain regions.

The results, appearing May 1 in Nature Neuroscience, are the latest to hint at a resolution to lines of evidence that have suggested busier brain cells can both contribute to and prevent Alzheimer’s. According to a new theory, which brain cells are kept busy may make all the difference.

“Engaging the brain in tasks like reading, socializing or studying may be helpful because they reduce activity in susceptible regions and increase activity in regions that seem to be less vulnerable to Alzheimer’s plaque deposition,” says David M. Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology. “I suspect that sleep deprivation and increased stress, which may affect Alzheimer’s risk, may also increase activity levels in these vulnerable regions.”

The susceptible regions of the brain highlighted in the new study belong to the default mode network, a group of brain regions that become more active when the brain is not engaged in a cognitively demanding task. Co-author Marcus Raichle, MD, professor of neurology, of radiology and of neurobiology, was among the first to describe the default mode network.

In a paper published in 2005, Washington University researchers showed that regions in the default mode network are often among the first to develop Alzheimer’s plaques. To understand why, Adam Bero, a graduate student in Holtzman’s lab, analyzed the brain chemistry of mice. He found that the mouse brain regions analogous to those in the human default mode network had similarly high levels of early amyloid plaque deposits when compared to other areas.

Next, Bero showed in younger mice that the high-plaque regions had increased amyloid beta levels. In a third experiment, he found that the greater amyloid beta levels were caused by increased nerve cell communication in the affected regions.

To further prove the relationship between plaque formation and cell communication, scientists trimmed the whiskers on one side of a group of mice and kept them short for one month.

“Because mice are nocturnal and their eyesight is poor, whiskers are an important way for them to sense where they are in their environment,” Holtzman explains. “By cutting the whiskers back on one side, we reduced neuronal activity in the region of the brain that senses whisker movement.”

Loss of this input resulted in smaller and less numerous plaques on the side of the brain connected to the pruned whiskers. In a separate experiment, when researchers regularly stimulated whiskers with a cotton swab, amyloid beta levels increased.

According to Holtzman, the results demonstrate the direct connection between amyloid plaque formation and growth and changes in brain cell activity levels in various parts of the brain. He plans further investigations of the mechanisms that regulate default brain activity, their connections to phenomena such as sleep, and their potential effects on Alzheimer’s disease.

Michael C. Purdy | EurekAlert!
Further information:
http://www.wustl.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>