Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cells talk more in areas Alzheimer’s hits first, boosting plaque component

Higher levels of cell chatter boost amyloid beta in the brain regions that Alzheimer’s hits first, researchers at Washington University School of Medicine in St. Louis report. Amyloid beta is the main ingredient of the plaque lesions that are a hallmark of Alzheimer’s.

These brain regions belong to a network that is more active when the brain is at rest. The discovery that cells in these regions communicate with each other more often than cells in other parts of the brain may help explain why these areas are frequently among the first to develop plaques, according to the researchers.

Working with mice genetically engineered to develop Alzheimer’s type-brain changes, scientists reduced the size and number of plaques by decreasing brain cell activity in certain regions.

The results, appearing May 1 in Nature Neuroscience, are the latest to hint at a resolution to lines of evidence that have suggested busier brain cells can both contribute to and prevent Alzheimer’s. According to a new theory, which brain cells are kept busy may make all the difference.

“Engaging the brain in tasks like reading, socializing or studying may be helpful because they reduce activity in susceptible regions and increase activity in regions that seem to be less vulnerable to Alzheimer’s plaque deposition,” says David M. Holtzman, MD, the Andrew B. and Gretchen P. Jones Professor and head of the Department of Neurology. “I suspect that sleep deprivation and increased stress, which may affect Alzheimer’s risk, may also increase activity levels in these vulnerable regions.”

The susceptible regions of the brain highlighted in the new study belong to the default mode network, a group of brain regions that become more active when the brain is not engaged in a cognitively demanding task. Co-author Marcus Raichle, MD, professor of neurology, of radiology and of neurobiology, was among the first to describe the default mode network.

In a paper published in 2005, Washington University researchers showed that regions in the default mode network are often among the first to develop Alzheimer’s plaques. To understand why, Adam Bero, a graduate student in Holtzman’s lab, analyzed the brain chemistry of mice. He found that the mouse brain regions analogous to those in the human default mode network had similarly high levels of early amyloid plaque deposits when compared to other areas.

Next, Bero showed in younger mice that the high-plaque regions had increased amyloid beta levels. In a third experiment, he found that the greater amyloid beta levels were caused by increased nerve cell communication in the affected regions.

To further prove the relationship between plaque formation and cell communication, scientists trimmed the whiskers on one side of a group of mice and kept them short for one month.

“Because mice are nocturnal and their eyesight is poor, whiskers are an important way for them to sense where they are in their environment,” Holtzman explains. “By cutting the whiskers back on one side, we reduced neuronal activity in the region of the brain that senses whisker movement.”

Loss of this input resulted in smaller and less numerous plaques on the side of the brain connected to the pruned whiskers. In a separate experiment, when researchers regularly stimulated whiskers with a cotton swab, amyloid beta levels increased.

According to Holtzman, the results demonstrate the direct connection between amyloid plaque formation and growth and changes in brain cell activity levels in various parts of the brain. He plans further investigations of the mechanisms that regulate default brain activity, their connections to phenomena such as sleep, and their potential effects on Alzheimer’s disease.

Michael C. Purdy | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>