Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells Take Sole Responsibility for Merkel Cell Maintenance

27.01.2015

Researchers have identified a population of “progenitor” cells in the skin that are solely responsible for the generation and maintenance of touch-sensing Merkel cells. The study appears in The Journal of Cell Biology.

Merkel cells are unique cells located in the epidermis, the outermost layer of the skin. Through connections to nerve endings, Merkel cells play critical roles in our sense of touch. They are hypothesized to be the cells that undergo cancerous transformation and cause Merkel cell carcinoma, an aggressive form of skin cancer with no effective treatment.


Wright et al., 2015

After six months, whisker follicles in adult mice lacking Atoh1-expressing progenitor skin cells (left) have a deficiency of Merkel cells (green) compared with a control group (right).

Merkel cells require a transcription factor called Atoh1 for their specification. But the identity of the progenitor, or stem cells, that give rise to Merkel cells during embryonic development and adulthood is unclear.

In the study, Stephen Maricich and colleagues identified a subpopulation of Atoh1-expressing cells in hair and whisker follicles within mouse skin that exclusively give rise to Merkel cells during development and adulthood. Removing Atoh1-positive skin cells in adult mice led to a permanent reduction in Merkel cell numbers, showing that other stem cell populations are incapable of producing Merkel cells.

Importantly, the findings suggest that, if Merkel cell carcinoma does arise from Merkel cell progenitors, then Atoh1-positive Merkel cell precursors could be the cells of origin. This discovery will therefore help researchers dissect the cell-specific events mediating tumorigenesis in the particular case of Merkel cell carcinoma.

Wright, M.C., et al. 2015. J. Cell Biol. doi:10.1083/jcb.201407101

About The Journal of Cell Biology
The Journal of Cell Biology (JCB) is published by The Rockefeller University Press. All editorial decisions on manuscripts submitted are made by active scientists in conjunction with our in-house scientific editors. JCB content is posted to PubMed Central, where it is available to the public for free six months after publication. Authors retain copyright of their published works, and third parties may reuse the content for non-commercial purposes under a creative commons license. For more information, please visit www.jcb.org

Research reported in the press release was supported by the National Institutes of Health and the Richard King Mellon Foundation Institute for Pediatric Research.

Contact Information
Rita Sullivan King
Communications Manager
news@rupress.org
Phone: 212-327-8603

Rita Sullivan King | newswise
Further information:
http://www.rupress.org

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Morbid Obesity: Gastric Bypass and Sleeve Gastrectomy Are Comparable

17.01.2018 | Health and Medicine

Researchers identify new way to unmask melanoma cells to the immune system

17.01.2018 | Health and Medicine

Genetic discovery may help better identify children at risk for type 1 diabetes

17.01.2018 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>