Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells sourced from adult rabbits and recast as stem cells show good potential for laboratory use

11.10.2010
RIKEN molecular biologists have successfully reprogrammed adult rabbit body cells to form colonies of fully pluripotent cells that are highly similar to rabbit embryonic stem cells (ESCs).

These induced pluripotent stem (iPS) cells of rabbits are likely to be used as a laboratory model of human iPS cells, the researchers say—in particular, for comparisons with ESCs to evaluate the feasibility of iPS cells for regenerative medicine.

In fact, the researchers consider the development of these rabbit iPS cells as an important tool for human medical research, as rabbits are much closer to humans physiologically than mice and can be handled much more easily in the laboratory than other animals used as models of humans, such as pigs and monkeys.

The research team from the RIKEN BioResource Center in Tsukuba, which was led by Atsuo Ogura, used lentiviruses modified as vectors to introduce four human genes into adult rabbit liver and stomach cells1. The genes—for transcription factors that guide reading of the DNA—effectively reprogrammed the adult cells as iPS cells, and these proved easy to handle and maintain in culture (Fig. 1). But the result was dependent on the initial adult cell-type, according to Arata Honda, a researcher in Ogura’s team.

Honda says that the researchers first tried without success to reprogram adult rabbit fibroblasts, the most common cells in connective tissue.

They tested the properties of the rabbit iPS cells by using them to generate the tumors known as teratomas that contain differentiated or specialized cells of all three types of germ layers—ectoderm, endoderm and mesoderm (Fig. 1). Marker compounds that are characteristic of stem cells were present in the iPS cells.

Ogura, Honda and colleagues also determined which genes were active in their rabbit iPS cells. When they compared the profile of this activity with that found for rabbit ESCs, they found that, although not the same, the two types of cells were very similar.

At least three types of pluripotent cells, generated from rabbits by different methods, are now available to researchers—ES cells, iPS cells, and nuclear transfer ES cells. “Thus, using rabbits, we can fully characterize these different pluripotent cells in parallel under the same experimental conditions,” Ogura says.

Honda adds that: “We can now assess the efficacy and safety of new cell-based treatments for degenerative diseases in human. We hope that we will finally identify which type of cells is best suited for each purpose of regenerative therapy in humans.”

The corresponding author for this highlight is based at the Bioresource Engineering Division, RIKEN BioResource Center

Journal information

1. Honda, A., Hirose, M., Hatori, M., Matoba, S., Miyoshi, H., Inoue, K. & Ogura, A. Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. Journal of Biological Chemistry published online 29 July 2010 (doi: 10.1074/jbc.M110.150540).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6416
http://www.researchsea.com

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>