Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells sourced from adult rabbits and recast as stem cells show good potential for laboratory use

11.10.2010
RIKEN molecular biologists have successfully reprogrammed adult rabbit body cells to form colonies of fully pluripotent cells that are highly similar to rabbit embryonic stem cells (ESCs).

These induced pluripotent stem (iPS) cells of rabbits are likely to be used as a laboratory model of human iPS cells, the researchers say—in particular, for comparisons with ESCs to evaluate the feasibility of iPS cells for regenerative medicine.

In fact, the researchers consider the development of these rabbit iPS cells as an important tool for human medical research, as rabbits are much closer to humans physiologically than mice and can be handled much more easily in the laboratory than other animals used as models of humans, such as pigs and monkeys.

The research team from the RIKEN BioResource Center in Tsukuba, which was led by Atsuo Ogura, used lentiviruses modified as vectors to introduce four human genes into adult rabbit liver and stomach cells1. The genes—for transcription factors that guide reading of the DNA—effectively reprogrammed the adult cells as iPS cells, and these proved easy to handle and maintain in culture (Fig. 1). But the result was dependent on the initial adult cell-type, according to Arata Honda, a researcher in Ogura’s team.

Honda says that the researchers first tried without success to reprogram adult rabbit fibroblasts, the most common cells in connective tissue.

They tested the properties of the rabbit iPS cells by using them to generate the tumors known as teratomas that contain differentiated or specialized cells of all three types of germ layers—ectoderm, endoderm and mesoderm (Fig. 1). Marker compounds that are characteristic of stem cells were present in the iPS cells.

Ogura, Honda and colleagues also determined which genes were active in their rabbit iPS cells. When they compared the profile of this activity with that found for rabbit ESCs, they found that, although not the same, the two types of cells were very similar.

At least three types of pluripotent cells, generated from rabbits by different methods, are now available to researchers—ES cells, iPS cells, and nuclear transfer ES cells. “Thus, using rabbits, we can fully characterize these different pluripotent cells in parallel under the same experimental conditions,” Ogura says.

Honda adds that: “We can now assess the efficacy and safety of new cell-based treatments for degenerative diseases in human. We hope that we will finally identify which type of cells is best suited for each purpose of regenerative therapy in humans.”

The corresponding author for this highlight is based at the Bioresource Engineering Division, RIKEN BioResource Center

Journal information

1. Honda, A., Hirose, M., Hatori, M., Matoba, S., Miyoshi, H., Inoue, K. & Ogura, A. Generation of induced pluripotent stem cells in rabbits: potential experimental models for human regenerative medicine. Journal of Biological Chemistry published online 29 July 2010 (doi: 10.1074/jbc.M110.150540).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6416
http://www.researchsea.com

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>