Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells send dirty laundry home to mom

01.02.2010
Understanding how aged and damaged mother cells manage to form new and undamaged daughter cells is one of the toughest riddles of ageing, but scientists now know how yeast cells do it. In a groundbreaking study researchers from the University of Gothenburg, Sweden, show how the daughter cell uses a mechanical "conveyor belt" to dump damaged proteins in the mother cell.

"This ensures that the daughter cell is born without age-related damage," says professor Thomas Nyström from the Department of Cell and Molecular Biology.

Thomas Nyström is a professor of microbiology at the University of Gothenburg and one of Sweden's leading researchers in the field of cellular and molecular biology. His research group has published countless scientific discoveries about cell ageing which have provided a new understanding of aging and age-related diseases. Now he and his colleagues have identified a key piece in the ageing puzzle.

Mechanic transport

In a study published as a feature article in the scientific journal Cell, two collaborating research groups at the Department of Cell and Molecular Biology have been able to show how newly formed yeast cells transport damaged and aged proteins back to the mother cell, guaranteeing that the new cell is born young and healthy.

Mother dustbin

"Previously it was believed that these structures allowed only one-way traffic of proteins and organelles from mother cell to daughter cell," says Nyström. "We can now show that damaged proteins are transported in the opposite direction. In principle, this means that the daughter cell uses the mother cell as a dustbin for all the rubbish resulting from the ageing process, ensuring that the newly formed cell is born without age-related damage."

Conveyor belt

In the study, the researchers show that this transportation is mechanical, using conveyor-like structures called actin cables. A special gene which controls the rate of ageing, called SIR2, is needed for these cables to form properly. Previous research has shown that changing the SIR2 gene can markedly extend the life-span of an organism.

Longer life
"Increased SIR2 activity means a longer life, whereas a damaged SIR2 gene accelerates ageing," says Nyström. "This has been demonstrated in studies of yeast, worms, flies and fish, and may also be the case in mammals."

Future treatment

This knowledge of how age-damaged proteins are transported from daughter cell to mother cell could eventually be used in the treatment of age-related diseases caused by protein toxicity in humans, but Nyström says that it is too early to say how.

The first step

"The first step is to study whether this transportation of damaged proteins also occurs in the cells of mammals, including humans, for example in the formation of sex sells and stem cells."

The article The Polarisome Is Required for Segregation and Retrograde Transport of Protein Aggregates was published in Cell on 22 January. The study was performed jointly by Thomas Nyström and Julie Grantham's research groups at the Department of Cell and Molecular Biology at the University of Gothenburg. The lead author of the article is Beidong Liu, a postdoctoral researcher in Nyström's group.

Contact:
Thomas Nyström, professor, Department of Cell and Molecular Biology, University of Gothenburg
+46 31 786 2582
+46 706 929 260
thomas.nystrom@cmb.gu.se

Helena Aaberg | idw
Further information:
http://www.cell.com/abstract/S0092-8674%2809%2901617-1
http://www.gu.se

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>